第一单元四则运算.docx
- 文档编号:2790280
- 上传时间:2023-05-04
- 格式:DOCX
- 页数:12
- 大小:20.82KB
第一单元四则运算.docx
《第一单元四则运算.docx》由会员分享,可在线阅读,更多相关《第一单元四则运算.docx(12页珍藏版)》请在冰点文库上搜索。
第一单元四则运算
第一单元四则运算
第一课时加减法的意义和各部分间的关系
总序:
执行时间:
执笔人:
教学目标:
1.从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。
2.初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。
3.培养学生发现数学知识和运用数学知识解决问题的能力。
教学重点:
理解加、减法的意义和利用加减法的关系求加减法中的未知量。
教学难点:
从实例中探究加、减法的互逆关系。
一、复习铺垫
加减5分钟口算。
二、理解加减法的意义
1、理解加法的意义。
出示例1
(1)一列火车从西宁经过格尔木开往拉萨。
西宁到格尔木的铁路长814km,格尔木到拉萨的铁路长1142km。
西宁到拉萨的铁路长多少千米?
(1)问:
根据这道题你收集到了哪些信息?
(让学生尝试用线段图表示)
(2)请学生根据线段图写出加法算式。
814+1142=1956 或 1142+814=1956
师:
为什么用加法呢?
那怎样的运算叫做加法?
(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。
)
(3)小结:
把两个数合并成一个数的运算,叫做加法。
(出示加法的意义)说明加法各部分名称
2、理解减法的意义
能不能试着把这道加法应用题改编成减法应用题呢?
(1)根据学生的回答,出示例1
(2)(3)尝试用线段图表示:
师:
根据线段图写出两道减法算式,并说说这样列式的理由。
1956-814=1142 或 1956-1142=814
(2)问:
怎样的运算是减法?
(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:
已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。
(出示)
说明减法各部分名称
三、探究、理解加法和减法之间的关系。
1.问:
上面的这些算式,你觉得它们之间有什么联系?
观察上述四道算式中数字位置间关系,思考加法和减法之间的关系。
然后以小组的形式进行讨论。
(小组讨论。
个别汇报)
2.根据学生的汇报,出示:
加数+加数=和 被减数-减数=差
3.师归纳并小结:
减法是加法的逆运算。
(板书)
4.加法各部分之间的关系。
出示:
814+1142=1956
814=1956-1142
1142=1956-814
问:
观察算式,你能得到什么结论?
和=加数+加数
加数=和-另一个加数
5.减法各部分之间的关系。
出示:
800-350=450
800=450+350
350=800-450
问:
通过观察这组算式,你能得出减法各部分的关系吗?
观察这组算式讨论归纳得:
被减数=差+减数 减数=被减数-差
6.练习“做一做”
四、总结
师:
谁来说说我们这节课学习了些什么?
你知道了什么呢?
课后反思:
第二课时乘、除法的意义和各部分间的关系
总序:
执行时间:
执笔人:
教学目标:
1.理解乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用.
2.学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算.
3.在分析过程中,培养学生的推理、概括能力.
4.培养学生养成良好的验算习惯.
教学重点:
掌握乘、除法各部分间的关系,并对乘、除法进行验算.
教学难点:
理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答.
导入新课
一、我们已经做过大量的整数乘除法计算和应用题的练习,对于乘除法知识也有了初步的了解.这里我们要在原有的知识基础上,对乘除法的意义加以概括,使同学们能运用这些知识解决实际问题.(板书课题:
乘除法的意义)
二、理解乘除法的意义
1、乘法的意义
出示例1
(1)
用加法算:
3+3+3+3=12
用乘法算:
3×4=12
师:
为什么用乘法呢?
那怎样的运算叫做乘法?
(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是乘法。
)
小结:
求几个相同加数的和的简便运算,叫做乘法。
(出示乘法的意义)说明乘法各部分名称
2、理解除法的意义
能不能试着把这道乘法应用题改编成除法应用题呢?
出示例2
(2)(3)
(1)问:
与第
(1)题相比,第
(2)、(3)题分别是已知什么?
求什么?
怎样算?
列式计算:
12÷3=4 12÷4=3
(2)问:
怎样的运算是除法?
(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:
已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
说明除法各部分名称
(4)教学除法是乘法的逆运算.
引导学生观察:
第②、③与①的已知条件和问题有什么变化?
明确:
在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算.
3、教学乘除法各部分间的关系:
引导学生根据上面第①组算式总结乘法各部分间的关系.教师概括:
积=因数×因数一个因数=积÷另一个因数.(板书)引导学生观察第②组算式,自己总结出除法各部分间的关系.
商=被除数÷除数 除数=被除数÷商 被除数=商×除数
想一想:
在有余数的除法里,被除数与商、除数和余数之间有什么关系?
4、做一做
三、总结
课后反思:
第四课时有关0运算
总序:
执行时间:
执笔人:
教学目标
1、掌握0在四则运算的特性
2、理解0为什么不能做除数
3、提高学生计算的正确和概括能力
4、通过归纳分析总结0在四面八方则运算中的特性。
5、通过练习进一步掌握四则运算的特征。
重点难点
1、掌握0在四则运算中的特性
2、理解0为什么不能做除数。
教具准备
口算卡片
教学过程
一、导入
1、出示口算卡片
150+90= 43-0= 52-25=
0+50= 0×135= 0÷12=
学生口算后两题时可能有些困难,教师可以结合前两道已学过的含有0的加减法算式来对乘除法算式中含有的0的算法进行归纳。
“同学们我们前面学习了任何一个数加0或0加任何一个数和0减任何数或任何数减0,它们所得的结果都是原来的那个数而不是0,今天我们要学习的有关0的运算和以前学的有什么不同呢?
它们的结果又是多少呢?
让我们带着这些问题来进入今天的学习。
”
如果要课堂上有学生提出我们以前学习的含有0的减法只说了任何数减0得任何数,但如果是0减任何数还得任何数吗?
教师:
“这个问题我们在今后的学习中会进行探讨。
”同时并夸讲这位同学提出的问题好。
2、说出下列各题的运算顺序
128+570÷3×2 112-47×2
3、回忆
你知道哪些有关0的运算?
(1)小组合作交流并举例。
(2)全班交流
老师结合学生的概括,整理出板书内容。
一个数加上0,还得原数。
例5+0=5
被减数等于减数,差是0。
5-5=0
一个数和0相乘,仍得0 0×5=0
0除以任何数都得0 0÷5=0
4、质疑
(1)老师提出问题:
如果用0作除数结果会怎样?
板书:
5÷0=□0÷0=□
(2)引发思考
(3)小组交流
(4)举例说明观点
观点1:
如果被除数不等于0,如5÷0,它的高商不论等于几,与除数0相乘后的结果都不等于5。
观点2:
我们来讨论“0÷0”,它结果是多少呢?
可能有的同学认为“0÷0=0”。
也有的同学认为“0÷0=1”(相同数相除,商是1)。
实际上“0÷0”的商无论等于什么数,商和除数的积都来等于0,也就是说“0÷0”的结果有无数个。
观点3:
根据上面同学的分析,我认为如果0作除数,要么没有确定的结果,要么有无数结果,没有研究价值和意义,因此0不能作除数。
5、拓展练习
(1)教师让学生先明确题意。
(2)分组探究
(3)交流反馈
课堂作业设计
计算
0+8= 22+17×0= 0+7+7=
0×8= 56×27×0= 74-74+19=
巧算
3300÷25= 1320×500÷250
课后反思:
第五课时含括号的混合运算的顺序
总序:
执行时间:
执笔人:
一、教学目标
1、体会“小括号”和“中括号”在混合运算中的作用,掌握运算顺序,会计算带有“小括号”和“中括号”的三步题目,并会列综合算式解答有关的实际问题。
2、引导学生经历带有“小括号”和“中括号”的混合运算的运算顺序探索过程,培养学生独立思考、独立解决问题和积极参与学习活动的能力和意识。
二、教学重难点
教学重点:
掌握含有“小括号”和“中括号”的三步混合运算的运算顺序。
教学难点:
体会“小括号”和“中括号”的作用,会列带有“小括号”和“中括号”的算式解决实际问题。
三、教学准备
课件、计算卡。
四、教学过程
(一)复习旧知,导入新课
1.师:
同学们,这里有一些两步计算的式题,如果既有乘、除法,又有加、减法,我们应该先算什么,再算什么?
请大家试着标出来。
2.出示问题:
说说下面各题的运算顺序。
(1)7×2+30
(2)175-25×4
(3)40÷4+6(4)48-18÷2
3.课件辅助,显示结果:
(1)7×2+30
(2)175-25×4
(3)40÷4+6(4)48-18÷2
4.师:
是这样的吗?
画线的这一步应该先算。
在混合运算中我们要先算乘、除法,后算加、减法。
这是我们已经学过的知识。
今天我们继续来研究与计算顺序有关的知识。
(板书:
四则混合运算)
(二)经历过程,感受作用
1.师:
学校艺术节快到了,每个兴趣小组正在进行紧张的练习,让我们一起去看一看!
(出示课件)
学校航模小组男生有12人,女生有4人,美术小组是航模组的2倍。
2.师:
从图中你了解到哪些信息?
3.师:
根据题目中的信息你能提出什么数学问题吗?
预设:
生:
美术小组有多少人?
4.师:
这个问题怎样解决呢?
同学们自己将算式写下来,计算一下。
5.学生独立完成,教师采样
对比方案:
(1)12×2+4×2
(2)(12+4)×2
(3)12+4×2
6.比较方案:
(12+4)×2和12+4×2的区别。
(1)问:
这两个算式有什么区别?
为什么这两个算式的结果不一样?
预设:
生:
运算顺序不同
(2)问:
两个算式分别表示什么意思?
预设:
生:
第一个算式表示男女生人数和的两倍,第二个算式表示男生和女生的两倍。
7.师:
这样看我们的运算顺序除了先乘、除,后加、减外还需要补充什么?
预设:
生:
有小括号先算小括号里面,再算小括号外面的。
(三)深入研究,完善发现
1.继续出示挂图:
合唱组及问题。
(合唱组:
64人,合唱组的人数是美术组的几倍?
)
2.师:
看到这个问题你打算怎样解决?
生:
合唱组的人数÷美术组的人数=几倍
3.师:
刚才,我们分步解答了这个问题,先算出了——(美术组的人数),然后用——(合唱组的人数÷美术组的人数),现在你能不能把这两个算式合并成一个综合算式,在本上试试看,只列式。
预设:
可能出现:
方法一:
64÷(12+4)×2
方法二:
64÷((12+4)×2)
方法三:
64÷[(12+4)×2]
4.师:
我们先来看这个同学列的综合算式,请你说说看,你是怎么想的。
(逐一比较学生的算法)
(1)方法一:
①师:
这个算式,问题出在哪里?
预设:
按照运算顺序,最后算乘法了,而这题的最后一步应该算除法。
②师:
要解决这个问题的关键是要先算出美术组的人数,也就是(12+4)×2。
,这样就和他的算式矛盾了,看来得改变这个算式的运算顺序,怎样解决呢?
(2)方法二:
师:
再加一个括号,来看看这个算式怎么样?
预设:
连续两个小括号,重复了,有些看不清楚。
(3)方法三:
①师:
数学上规定,这个算式中已经有小括号了,再添加括号,就要用到中括号。
②师:
像这样的括号就是中括号。
伸出手来,一起跟我写一遍(描)。
板书:
[]
③让学生尝试加中括号:
请你在你的综合算式里添上中括号。
5.揭示课题:
今天这节课,我们就要来研究含有小括号和中括号的混合运算。
(板书课题)
6.师:
这时的算式中有小括号,又有中括号,应该怎样计算呢?
同桌互相说说这题的运算顺序。
有信心试一试吗?
7.介绍递等式中一步一步脱式的过程和书写的格式要求(等号位置,小括号算好后脱掉,移下来的是中括号)。
8.师:
你觉得第一步应该先算?
也就是要算出──航模组的人数。
64÷[(12+4)×2]
=64÷[16×2]
=64÷32
=2
9.师:
回顾头来看一下,这里的两个算式,一个只有小括号,一个又添加了中括号,那这个中括号在这里起到了什么作用?
总结:
对呀,中括号和小括号一样,也能改变题目中的运算顺序。
10.师:
在一个算式里,既有小括号又有中括号,应该按什么顺序运算?
(学生尝试概括运算顺序)
11.总结含有中括号的混合运算的运算顺序。
课件出示:
在一个算式里,既有小括号,又有中括号,要先算小括号里的,再算中括号里面的。
12.介绍有关“括号”的数学史。
小括号“()”是公元17世纪由荷兰人古拉特首先使用的。
中括号“[]”是公元17世纪由英国数学家瓦里士最先使用的。
在以后的学习中还会用到大括号“{}”,又称为花括号。
大括号是法国数学家韦达在1593年首先使用的。
(四)巩固练习,不断深化
1.基础练习。
P9做一做
先说一说下面各题的运算顺序,再计算。
(1)360÷(70-4×16)
(2)158-[(27+54)÷9]
2.综合练习。
P11练习三3
下面各题,看谁做的都对。
72-4×6÷36000÷75-60-10
(72-4)×6÷36000÷(75-60)-10
(72-4)×(6÷3)6000÷[75-(60-10)]
(1)独立解题。
(2)交流结果。
(3)对比说明计算顺序。
3.发散练习
根据运算顺序添上小括号或中括号。
(1)32×800-400÷25先减再乘最后除。
(2)32×800-400÷25先除再减最后乘。
(3)32×800-400÷25先减再除最后乘。
(五)拓展知识,评价总结
课后反思:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一 单元 四则运算