高中数学求数列通项的常用方法.doc
- 文档编号:4697771
- 上传时间:2023-05-07
- 格式:DOC
- 页数:10
- 大小:632KB
高中数学求数列通项的常用方法.doc
《高中数学求数列通项的常用方法.doc》由会员分享,可在线阅读,更多相关《高中数学求数列通项的常用方法.doc(10页珍藏版)》请在冰点文库上搜索。
选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库
求数列通项公式的方法
本文章总结了求数列通项公式的几种常见的方法,分别有:
公式法,累加法,累乘法,待定系数法,对数变换法,迭代法,数学归纳法,换元法。
希望对大家有所帮助~~~
关键字:
数列,通项公式,方法
一、公式法
例1已知数列满足,,求数列的通项公式。
解:
两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:
本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法
例2已知数列满足,求数列的通项公式。
解:
由得则
所以数列的通项公式为。
评注:
本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3已知数列满足,求数列的通项公式。
解:
由得则
所以
评注:
本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:
两边除以,得,
则,故
因此,
则
评注:
本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法
例5已知数列满足,求数列的通项公式。
解:
因为,所以,则,故
所以数列的通项公式为
评注:
本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6已知数列满足,求的通项公式。
解:
因为 ①
所以 ②
用②式-①式得
则
故
所以 ③
由,,则,又知,则,代入③得。
所以,的通项公式为
评注:
本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法
例7已知数列满足,求数列的通项公式。
解:
设 ④
将代入④式,得,等式两边消去,得,两边除以,得代入④式得 ⑤
由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:
本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8已知数列满足,求数列的通项公式。
解:
设 ⑥
将代入⑥式,得
整理得。
令,则,代入⑥式得
⑦
由及⑦式,
得,则,
故数列是以为首项,以3为公比的等比数列,因此,则。
评注:
本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
例9已知数列满足,求数列的通项公式。
解:
设⑧
将代入⑧式,得
,则
等式两边消去,得,
解方程组,则,代入⑧式,得
⑨
由及⑨式,得
则,故数列为以为首项,以2为公比的等比数列,因此,则。
评注:
本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
五、对数变换法
例10已知数列满足,,求数列的通项公式。
解:
因为,所以。
在式两边取常用对数得 ⑩
设
将⑩式代入式,得,两边消去并整理,得,则
,故
代入式,得
由及式,
得,
则,
所以数列是以为首项,以5为公比的等比数列,则,因此
则。
评注:
本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
六、迭代法
例11已知数列满足,求数列的通项公式。
解:
因为,所以
又,所以数列的通项公式为。
评注:
本题还可综合利用累乘法和对数变换法求数列的通项公式。
即先将等式两边取常用对数得,即,再由累乘法可推知,从而。
七、数学归纳法
例12已知数列满足,求数列的通项公式。
解:
由及,得
由此可猜测,往下用数学归纳法证明这个结论。
(1)当时,,所以等式成立。
(2)假设当时等式成立,即,则当时,
由此可知,当时等式也成立。
根据
(1),
(2)可知,等式对任何都成立。
评注:
本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。
八、换元法
例13已知数列满足,求数列的通项公式。
解:
令,则
故,代入得
即
因为,故
则,即,
可化为,
所以是以为首项,以为公比的等比数列,因此,则,即,得
。
评注:
本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
火炉子
教学目标
1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力
3.学会应用数学思想和方法解决排列组合问题.
选校网专业大全历年分数线上万张大学图片大学视频院校库
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 数列 常用 方法