质粒DNA提取方法与原理.docx
- 文档编号:14561111
- 上传时间:2023-06-24
- 格式:DOCX
- 页数:6
- 大小:21.69KB
质粒DNA提取方法与原理.docx
《质粒DNA提取方法与原理.docx》由会员分享,可在线阅读,更多相关《质粒DNA提取方法与原理.docx(6页珍藏版)》请在冰点文库上搜索。
质粒DNA提取方法与原理
质粒DNA提取的原理、操作步骤、各溶液的作用
细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。
各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。
目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA-。
碱裂解是法一种应用最为广泛的制备质粒DNA的方法,其基本原理为:
当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。
纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。
例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。
对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。
一、试剂准备
1.溶液Ⅰ:
50mM葡萄糖,25mMTris-HCl(pH8.0),10mMEDTA(pH8.0)。
1MTris-HCl(pH8.0)12.5ml,0.5MEDTA(pH8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。
在10lbf/in2高压灭菌15min,贮存于4℃。
任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液。
50mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
所以说溶液I中葡萄糖是可缺的。
EDTA呢?
大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:
抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10mM的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?
实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。
NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性
2.溶液Ⅱ:
0.2NNaOH,1%SDS。
2NNaOH1ml,10%SDS1ml,加ddH2O至10ml。
使用前临时配置 。
这是用新鲜的0.4N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
用了不新鲜的0.4NNaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。
如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。
很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。
有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?
那是为下一步操作做的铺垫。
这一步要记住两点:
第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。
基因组DNA的断裂会带来麻烦。
3.溶液Ⅲ:
醋酸钾(KAc)缓冲液,pH4.8。
5MKAc300ml,冰醋酸57.5ml,加ddH2O至500ml。
4℃保存备用。
溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。
最容易产生的误解是,当SDS碰到酸性后发生的沉淀。
如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。
大量沉淀的出现,显然与SDS的加入有关系。
如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。
既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?
在1%的SDS溶液中慢慢加入5N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。
因此高浓度的盐导致了SDS的沉淀。
但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。
这其实是十二烷基硫酸钠(sodiumdodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassiumdodecylsulfate,PDS),而PDS是水不溶的,因此发生了沉淀。
如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。
大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。
这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被SDS给共沉淀了,尽管SDS并不与DNA分子结合。
那么2M的醋酸又是为什么而加的呢?
是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。
基因组DNA一旦发生断裂,只要是50-100kb大小的片断,就没有办法再被PDS共沉淀了。
所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。
很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。
NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。
溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。
4.TE:
10mMTris-HCl(pH8.0),1mMEDTA(pH8.0)。
1MTris-HCl(pH8.0)1ml,0.5MEDTA(pH8.0)0.2ml,加ddH2O至100ml。
15lbf/in2高压湿热灭菌20min,4℃保存备用。
5.苯酚/氯仿/异戊醇(25:
24:
1)
不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。
这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。
酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。
至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。
6.乙醇(无水乙醇、70%乙醇)
回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。
这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。
高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。
如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。
得到的质粒样品一般用含RNase(50ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的.
7.5×TBE:
Tris碱54g,硼酸27.5g,EDTA-Na2·2H2O4.65g,加ddH2O至1000ml。
15lbf/in2高压湿热灭菌20min,4℃保存备用。
8.溴化乙锭(EB):
10mg/ml
9.RNaseA(RNA酶A):
不含DNA酶(DNase-free)RNaseA的10mg/ml,TE配制,沸水加热15min,分装后贮存于-20℃。
10.6×loadingbuffer(上样缓冲液):
0.25%溴酚蓝,0.25%二甲苯青FF,40%(W/V)蔗糖水溶液。
11.1%琼脂糖凝胶:
称取1g琼脂糖于三角烧瓶中,加100ml0.5×TBE,微波炉加热至完全溶化,冷却至60℃左右,加EB母液(10mg/ml)至终浓度0.5μg/ml(注意:
EB为强诱变剂,操作时带手套),轻轻摇匀。
缓缓倒入架有梳子的电泳胶板中,勿使有气泡,静置冷却30min以上,轻轻拔出梳子,放入电泳槽中(电泳缓冲液0.5×TBE),即可上样。
二、操作步骤
1.挑取LB固体培养基上生长的单菌落,接种于2.0mlLB(含相应抗生素)液体培养基中,37℃、250g振荡培养过夜(约12-14hr)。
2.取1.5ml培养物入微量离心管中,室温离心8000g×1min,弃上清,将离心管倒置,使液体尽可能流尽。
3.将细菌沉淀重悬于100μl预冷的溶液Ⅰ(50mM葡萄糖,25mMTris-HCl(pH8.0),10mMEDTA(pH8.0))中,剧烈振荡,使菌体分散混匀,(且不至于沉淀)。
4.加200μl新鲜配制的溶液Ⅱ,颠倒数次混匀(不要剧烈振荡),并将离心管放置于冰上2-3min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。
5.加入150μl预冷的溶液Ⅲ(醋酸甲AcK),将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置3-5min。
溶液Ⅲ为中和溶液,此时质粒DNA复性,染色体和蛋白质不可逆变性,形成不可溶复合物,同时K+使SDS-蛋白复合物沉淀。
6.加入450μl的苯酚/氯仿/异戊醇,振荡混匀,4℃离心12000g×10min。
没有用PDS沉淀干净的蛋白质置于下层
7.小心移出上清于一新微量离心管中,加入2.5倍体积预冷的无水乙醇,混匀,室温放置2-5min,4℃离心12000g×15min。
1.为什么用无水乙醇沉淀DNA?
用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。
乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。
DNA溶液是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。
一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。
因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。
但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。
折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。
也可以用0.6倍体积的异丙醇选择性沉淀DNA。
一般在室温下放置15-30分钟即可。
2.在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L?
在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的NaAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉淀不完全,当加入的盐溶液浓度太高时,其效果也不好。
在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀
8.1ml预冷的70%乙醇洗涤沉淀1-2次,4℃离心8000g×7min,弃上清,将沉淀在室温下晾干。
9.沉淀溶于20μlTE(含RNaseA20μg/ml),37℃水浴30min以降解RNA分子,-20℃保存备用。
三、质粒DNA的电泳检测
观察琼脂凝胶中DNA的最简单方法是利用荧光染料溴化乙锭进行染色。
该物质含有一个可以嵌入DNA的堆积碱基之间的一个平面基团,这个基团的固定位置及其与碱基的密切接近,导致染料与DNA结合并呈现荧光,其荧光产率比游离染料溶液有所增加。
DNA吸收254nm处的紫外辐射并传递给染料,而被结合的染料本身则在302nm和366nm有光吸收。
这两种情况下,被吸收的能量可在可见光谱红橙区的590nm处重新发射出来。
因此,当凝胶中含有游离溴化乙锭时即可以检测到少量的DNA。
取制备的质粒DNA1-2μl,加适当loadingbuffer混匀上样,采用1-5V/cm的电压,使DNA分子从负极向正极移动至合适位置,取出凝胶置紫外灯下检测,摄片。
四、注意事项
本裂解法小量制备质粒DNA重复性好,一般无麻烦。
若所提取质粒DNA不能被限制性内切酶切割,可通过酚/氯仿再次抽提,以清除杂质来解决问题。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 质粒 DNA 提取 方法 原理