三个遗传算法程序.docx
- 文档编号:474630
- 上传时间:2023-03-12
- 格式:DOCX
- 页数:22
- 大小:21.93KB
三个遗传算法程序.docx
《三个遗传算法程序.docx》由会员分享,可在线阅读,更多相关《三个遗传算法程序.docx(22页珍藏版)》请在冰点文库上搜索。
三个遗传算法程序
遗传算法程序
(一):
说明:
fga.m为遗传算法的主程序;采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择,均匀交叉,变异操作,而且还引入了倒位操作!
function[BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options)
%[BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)
%Findsamaximumofafunctionofseveralvariables.
%fmaxgasolvesproblemsoftheform:
%maxF(X)subjectto:
LB<=X<=UB
%BestPop-最优的群体即为最优的染色体群
%Trace-最佳染色体所对应的目标函数值
%FUN-目标函数
%LB-自变量下限
%UB-自变量上限
%eranum-种群的代数,取100--1000(默认200)
%popsize-每一代种群的规模;此可取50--200(默认100)
%pcross-交叉概率,一般取0.5--0.85之间较好(默认0.8)
%pmutation-初始变异概率,一般取0.05-0.2之间较好(默认0.1)
%pInversion-倒位概率,一般取0.05
0.3之间较好(默认0.2)
%options-1*2矩阵,options
(1)=0二进制编码(默认0),option
(1)~=0十进制编
%码,option
(2)设定求解精度(默认1e-4)
%
%------------------------------------------------------------------------
T1=clock;
ifnargin<3,error('FMAXGArequiresatleastthreeinputarguments');end
ifnargin==3,eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[01e-4];end
ifnargin==4,popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[01e-4];end
ifnargin==5,pCross=0.8;pMutation=0.1;pInversion=0.15;options=[01e-4];end
ifnargin==6,pMutation=0.1;pInversion=0.15;options=[01e-4];end
ifnargin==7,pInversion=0.15;options=[01e-4];end
iffind((LB-UB)>0)
error('数据输入错误,请重新输入(LB '); end s=sprintf('程序运行需要约%.4f秒钟时间,请稍等......',(eranum*popsize/1000)); disp(s); globalmnNewPopchildren1children2VarNum bounds=[LB;UB]';bits=[];VarNum=size(bounds,1); precision=options (2);%由求解精度确定二进制编码长度 bits=ceil(log2((bounds(: 2)-bounds(: 1))'./precision));%由设定精度划分区间 [Pop]=InitPopGray(popsize,bits);%初始化种群 [m,n]=size(Pop); NewPop=zeros(m,n); children1=zeros(1,n); children2=zeros(1,n); pm0=pMutation; BestPop=zeros(eranum,n);%分配初始解空间BestPop,Trace Trace=zeros(eranum,length(bits)+1); i=1; whilei<=eranum forj=1: m value(j)=feval(FUN(1,: ),(b2f(Pop(j,: ),bounds,bits)));%计算适应度 end [MaxValue,Index]=max(value); BestPop(i,: )=Pop(Index,: ); Trace(i,1)=MaxValue; Trace(i,(2: length(bits)+1))=b2f(BestPop(i,: ),bounds,bits); [selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择 [CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum)); %采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率 %round(unidrnd(eranum-i)/eranum) [MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异 [InversionPop]=Inversion(MutationPop,pInversion);%倒位 Pop=InversionPop;%更新 pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4); %随着种群向前进化,逐步增大变异率至1/2交叉率 p(i)=pMutation; i=i+1; end t=1: eranum; plot(t,Trace(: 1)'); title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)'); [MaxFval,I]=max(Trace(: 1)); X=Trace(I,(2: length(bits)+1)); holdon;plot(I,MaxFval,'*'); text(I+5,MaxFval,['FMAX='num2str(MaxFval)]); str1=sprintf('进化到%d代,自变量为%s时,得本次求解的最优值%f\n对应染色体是: %s',I,num2str(X),MaxFval,num2str(BestPop(I,: ))); disp(str1); %figure (2);plot(t,p);%绘制变异值增大过程 T2=clock; elapsed_time=T2-T1; ifelapsed_time(6)<0 elapsed_time(6)=elapsed_time(6)+60;elapsed_time(5)=elapsed_time(5)-1; end ifelapsed_time(5)<0 elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1; end%像这种程序当然不考虑运行上小时啦 str2=sprintf('程序运行耗时%d小时%d分钟%.4f秒',elapsed_time(4),elapsed_time(5),elapsed_time(6)); disp(str2); %初始化种群 %采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点 function[initpop]=InitPopGray(popsize,bits) len=sum(bits); initpop=zeros(popsize,len);%Thewholezeroencodingindividual fori=2: popsize-1 pop=round(rand(1,len)); pop=mod(([0pop]+[pop0]),2); %i=1时,b (1)=a (1);i>1时,b(i)=mod(a(i-1)+a(i),2) %其中原二进制串: a (1)a (2)...a(n),Gray串: b (1)b (2)...b(n) initpop(i,: )=pop(1: end-1); end initpop(popsize,: )=ones(1,len);%Thewholeoneencodingindividual %解码 function[fval]=b2f(bval,bounds,bits) %fval-表征各变量的十进制数 %bval-表征各变量的二进制编码串 %bounds-各变量的取值范围 %bits-各变量的二进制编码长度 scale=(bounds(: 2)-bounds(: 1))'./(2.^bits-1);%Therangeofthevariables numV=size(bounds,1); cs=[0cumsum(bits)]; fori=1: numV a=bval((cs(i)+1): cs(i+1)); fval(i)=sum(2.^(size(a,2)-1: -1: 0).*a)*scale(i)+bounds(i,1); end %选择操作 %采用基于轮盘赌法的非线性排名选择 %各个体成员按适应值从大到小分配选择概率: %P(i)=(q/1-(1-q)^n)*(1-q)^i,其中P(0)>P (1)>...>P(n),sum(P(i))=1 function[selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits) globalmn selectpop=zeros(m,n); fit=zeros(m,1); fori=1: m fit(i)=feval(FUN(1,: ),(b2f(pop(i,: ),bounds,bits)));%以函数值为适应值做排名依据 end selectprob=fit/sum(fit);%计算各个体相对适应度(0,1) q=max(selectprob);%选择最优的概率 x=zeros(m,2); x(: 1)=[m: -1: 1]'; [yx(: 2)]=sort(selectprob); r=q/(1-(1-q)^m);%标准分布基值 newfit(x(: 2))=r*(1-q).^(x(: 1)-1);%生成选择概率 newfit=cumsum(newfit);%计算各选择概率之和 rNums=sort(rand(m,1)); fitIn=1;newIn=1; whilenewIn<=m ifrNums(newIn) selectpop(newIn,: )=pop(fitIn,: ); newIn=newIn+1; else fitIn=fitIn+1; end end %交叉操作 function[NewPop]=CrossOver(OldPop,pCross,opts) %OldPop为父代种群,pcross为交叉概率 globalmnNewPop r=rand(1,m); y1=find(r y2=find(r>=pCross); len=length(y1); iflen>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数 y2(length(y2)+1)=y1(len); y1(len)=[]; end iflength(y1)>=2 fori=0: 2: length(y1)-2 ifopts==0 [NewPop(y1(i+1),: ),NewPop(y1(i+2),: )]=EqualCrossOver(OldPop(y1(i+1),: ),OldPop(y1(i+2),: )); else [NewPop(y1(i+1),: ),NewPop(y1(i+2),: )]=MultiPointCross(OldPop(y1(i+1),: ),OldPop(y1(i+2),: )); end end end NewPop(y2,: )=OldPop(y2,: ); %采用均匀交叉 function[children1,children2]=EqualCrossOver(parent1,parent2) globalnchildren1children2 hidecode=round(rand(1,n));%随机生成掩码 crossposition=find(hidecode==1); holdposition=find(hidecode==0); children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因 children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因 children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因 children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因 %采用多点交叉,交叉点数由变量数决定 function[Children1,Children2]=MultiPointCross(Parent1,Parent2) globalnChildren1Children2VarNum Children1=Parent1; Children2=Parent2; Points=sort(unidrnd(n,1,2*VarNum)); fori=1: VarNum Children1(Points(2*i-1): Points(2*i))=Parent2(Points(2*i-1): Points(2*i)); Children2(Points(2*i-1): Points(2*i))=Parent1(Points(2*i-1): Points(2*i)); end %变异操作 function[NewPop]=Mutation(OldPop,pMutation,VarNum) globalmnNewPop r=rand(1,m); position=find(r<=pMutation); len=length(position); iflen>=1 fori=1: len k=unidrnd(n,1,VarNum);%设置变异点数,一般设置1点 forj=1: length(k) ifOldPop(position(i),k(j))==1 OldPop(position(i),k(j))=0; else OldPop(position(i),k(j))=1; end end end end NewPop=OldPop; %倒位操作 function[NewPop]=Inversion(OldPop,pInversion) globalmnNewPop NewPop=OldPop; r=rand(1,m); PopIn=find(r<=pInversion); len=length(PopIn); iflen>=1 fori=1: len d=sort(unidrnd(n,1,2)); ifd (1)~=1&d (2)~=n NewPop(PopIn(i),1: d (1)-1)=OldPop(PopIn(i),1: d (1)-1); NewPop(PopIn(i),d (1): d (2))=OldPop(PopIn(i),d (2): -1: d (1)); NewPop(PopIn(i),d (2)+1: n)=OldPop(PopIn(i),d (2)+1: n); end end end 遗传算法程序 (二): functionyouhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); whilegeneration<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(: ind(1: (N-2)/2)); B=fatherrand(: ind((N-2)/2+1: end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rndtmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %forkk=1: (N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1: rndtmp,kk); %A(1: rndtmp,kk)=B(1: rndtmp,kk); %B(1: rndtmp,kk)=tmp; %end fatherrand=[fatherrand(: 1: 2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(: 1: 2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,: )=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1: 2)=scoreind(end-1: end); fork=3: N tmprnd=rand; tmpind=tmprnddifind=[0,diff(tmpind)]; if~any(difind) difind (1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(: childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(: 4); FF4=F4-fatherrand(: 1); FF4=max(FF4,1); D(: 5)=FF4; saveDDataD functionD=code loadyouhua.mat %propertiesF2andF3 F1=A(: 1); F2=A(: 2); F3=A(: 3); if(max(F2)>1450)||(min(F2)<=900) error('DATApropertyF2exceedit''srange(900,1450]') end %getgrouppropertyF1ofdata,accordingtoF2value F4=zeros(size(F1)); forite=11: -1: 1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; functionScoreN=scorefun(fatherrand,D) F3=D(: 3); F4=D(: 4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化 fork=1: N FF4k=FF4rnd(: k); forite=1: 11 F0index=find(FF4k==ite); if~isempty(F0index) tmpMat=F3(F0index); tmpSco=sum(tmpMat); ScoreBin(ite)=mod(tmpSco,300); end end Scorek(k)=sum(ScoreBin); end ScoreN=ScoreN-Scorek; 遗传算法程序(三): %IAGA functionbest=ga clear MAX_gen=200;%最大迭代步数 best.max_f=0;%当前最大的适应度 STOP_f=14.5;%停止循环的适应度 RANGE=[0255];%初始取值范围[0255] SPEEDUP_INTER=5;%进入加速迭代的间隔 advance_k=0;%优化的次数 popus=init;%初始化 forgen=1: MAX_gen fitness=fit(popus,RANGE);%求适应度 f=fitness.f; picked=choose(popus,fitness);%选择 popus=intercross(popus,picked);%杂交 popus=aberrance(popus,picked);%变异 ifmax(f)>best.max_f advance_k=advance_k+1; x_better(advance_k)=fitness.x; best.max_f=max(f); best.popus=popus; best.x=fitness.x; end ifmod(advance_k,SPEEDUP_INTER)==0 RANGE=minmax(x_better); RANGE advance=0; end end return; functionpopus=init%初始化 M=50;%种群个体数目 N=30;%编码长度 popus=round(rand(M,N)); return; function
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三个 遗传 算法 程序
