自动控制原理(中英文对照李道根)习题3.题解.pdf
- 文档编号:11592943
- 上传时间:2023-06-01
- 格式:PDF
- 页数:18
- 大小:222.79KB
自动控制原理(中英文对照李道根)习题3.题解.pdf
《自动控制原理(中英文对照李道根)习题3.题解.pdf》由会员分享,可在线阅读,更多相关《自动控制原理(中英文对照李道根)习题3.题解.pdf(18页珍藏版)》请在冰点文库上搜索。
Solutions13SolutionsP3.1Theunitstepresponseofacertainsystemisgivenbytteetc21)(,0t(a)Determinetheimpulseresponseofthesystem.(b)Determinethetransferfunction)()(sRsCofthesystem.Solution:
Theimpulseresponseisthedifferentialofcorrespondingstepresponse,i.e.tteetttctk22)(d)(d)(AsweknowthatthetransferfunctionistheLaplacetransformofcorrespondingimpulseresponse,i.e.2324221112)()()(222sssssseetLsRsCttP3.2ConsiderthesystemdescribedbytheblockdiagramshowninFig.P3.2(a).DeterminethepolaritiesoftwofeedbacksforeachofthefollowingstepresponsesshowninFig.P3.2(b),where“0”indicatesthatthefeedbackisopen.Solution:
Ingeneralwehave)(sR)(sCsk2(a)Blockdiagramsk1000.10t)(tc0.10t)(tc0.10t)(tc0.10t)(tcAsymptoticline0.10t)(tcParabolic(b)Unit-stepresponses
(1)
(2)(3)(4)(5)FigureP3.2Solutions1421020221)()(kkskskksRsCNotethatthecharacteristicpolynomialis210202)(kksksswherethesignofsk2isdependedontheouterfeedbackandthesignof21kkisdependedontheinterfeedback.Case
(1).Theresponsepresentsasinusoidal.Itmeansthatthesystemhasapairofpureimaginaryroots,i.e.thecharacteristicpolynomialisintheformof212)(kkss.Obviously,theoutletfeedbackis“”andtheinnerfeedbackis“0”.Case
(2).Theresponsepresentsadivergedoscillation.Thesystemhasapairofcomplexconjugaterootswithpositiverealparts,i.e.thecharacteristicpolynomialisintheformof2122)(kkskss.Obviously,theoutletfeedbackis“+”andtheinnerfeedbackis“”.Case(3).Theresponsepresentsaconvergedoscillation.Itmeansthatthesystemhasapairofcomplexconjugaterootswithnegativerealparts,i.e.thecharacteristicpolynomialisintheformof2122)(kkskss.Obviously,boththeoutletandinnerfeedbacksare“”.Case(4).Infactthisisarampresponseofafirst-ordersystem.Hence,theoutletfeedbackis“0”toproducearampsignalandtheinnerfeedbackis“”.Case(5).Consideringthataparabolicfunctionistheintegralofarampfunction,boththeoutletandinnerfeedbacksare“0”.P3.3Considereachofthefollowingclosed-looptransferfunction.Byconsideringthelocationofthepolesonthecomplexplane,sketchtheunitstepresponse,explainingtheresultsobtained.(a)201220)(2sss,(b)61166)(23ssss(c)224)(2sss,(d)5)(52(5.12)(2ssssSolution:
(a)10)(2(20201220)(2sssssByinspection,thecharacteristicrootsare2,10.Thisisanoverdampedsecond-ordersystem.Therefore,consideringthattheclosed-loopgainis1k,itsunitstepresponsecanbesketchedasshown.(b)3)
(2)(1(661166)(23sssssssByinspection,thecharacteristicrootsare1,2,3.Obviously,allthreetransientcomponentsaredecayedexponentialterms.Therefore,itsunitstepresponse,withaclosed-loopgain1k,issketchedasshown.0.10t)(tc0.10t)(tcSolutions15(c)1)1(4224)(22ssssThisisanunderdampedsecond-ordersystem,becauseitscharacteristicrootsarej1.Hence,transientcomponentisadecayedsinusoid.Notingthattheclosed-loopgainis2k,theunitstepresponsecanbesketchedasshown.(d)5(21(5.12)5)(52(5.12)(222ssssss)Byinspection,thecharacteristicrootsare21j,5.Since51.0,thereisapairofdominantpoles,21j,forthissystem.Theunitstepresponse,withaclosed-loopgain5.0k,issketchedasshown.P3.4Theopen-looptransferfunctionofaunitynegativefeedbacksystemis)1
(1)(sssGDeterminetherisetime,peaktime,percentovershootandsettingtime(usinga5%settingcriterion).Solution:
Writingheclosed-looptransferfunction2222211)(nnnsssssweget1n,5.0.Sincethisisanunderdampedsecond-ordersystemwith5.0,thesystemperformancecanbeestimatedasfollows.Risingtime.sec42.25.0115.0arccos1arccos22nrtPeaktime.sec62.35.011122nptPercentovershoot%3.16%100%100225.015.01eepSettingtime.sec615.033nst(usinga5%settingcriterion)P3.5Asecond-ordersystemgivesaunitstepresponseshowninFig.P3.5.Findtheopen-looptransferfunctionifthesystemisaunitnegative-feedbacksystem.Solution:
Byinspectionwehave%30%100113.1pSolvingtheformulaforcalculatingtheovershoot,(s)0.13.101.0t)(tcFigureP3.55.00t)(tc0.20t)(tcSolutions163.021ep,wehave362.0lnln22ppSince.sec1pt,solvingtheformulaforcalculatingthepeaktime,21npt,wegetsec/7.33radnHence,theopen-looptransferfunctionis)4.24(7.1135)2()(2sssssGnnP3.6AfeedbacksystemisshowninFig.P3.6(a),anditsunitstepresponsecurveisshowninFig.P3.6(b).Determinethevaluesof1k,2k,anda.Solution:
Thetransferfunctionbetweentheinputandoutputisgivenby2221)()(kasskksRsCThesystemisstableandwehave,fromtheresponsecurve,21lim)(lim122210kskasskkstcstByinspectionwehave%9%10000.211.218.2pSolvingtheformulaforcalculatingtheovershoot,09.021ep,wehave608.0lnln22ppSince.sec8.0pt,solvingtheformulaforcalculatingthepeaktime,21npt,wegetsec/95.4radnThen,comparingthecharacteristicpolynomialofthesystemwithitsstandardform,wehave00.218.208.0t)(tc)(sR)(sC)(2assk1k(a)(b)FigureP3.6Solutions1722222nnsskass5.2495.4222nk02.695.4608.022naP3.7Aunitynegativefeedbacksystemhastheopen-looptransferfunction)2()(kssksG(a)Determinethepercentovershoot.(b)Forwhatrangeofkthesettingtimelessthan0.75s(usinga5%settingcriterion).Solution:
(a)Fortheclosed-looptransferfunctionwehave222222)(nnnsskskskshence,byinspection,wegetsec/radkn,22Thepercentovershootis%32.4%10021ep(b)Since9.022,letting.sec75.025.033ktns(usinga5%settingcriterion)resultsin2275.06k,i.e.32kP3.8FortheservomechanismsystemshowninFig.P3.8,determinethevaluesofkandathatsatisfythefollowingclosed-loopsystemdesignrequirements.(a)Maximumof40%overshoot.(b)Peaktimeof4s.Solution:
Fortheclosed-looptransferfunctionwehave22222)(nnnsskskskshence,byinspection,wegetkn2,kn2,andnnk22Takingconsiderationof%40%10021epresultsin280.0.Inthiscase,tosatisfytherequirementofpeaktime,412npt,wehave)(sR)(sC2skas1FigureP3.8Solutions18.sec/818.0radnHence,thevaluesofkandaaredeterminedas67.02nk,68.02nP3.9Theopen-looptransferfunctionofaunityfeedbacksystemis)2()(ssksGAstepresponseisspecifiedas:
peaktimes1.1pt,andpercentovershoot%5p.(a)Determinewhetherbothspecificationscanbemetsimultaneously.(b)Ifthespecificationscannotbemetsimultaneously,determineacompromisevalueforksothatthepeaktimeandpercentovershootarerelaxedthesamepercentage.Solution:
Writingtheclosed-looptransferfunction222222)(nnnssksskswegetknandk1.(a)Assumingthatthepeaktimeissatisfiedsec1.1112ktnpweget16.9k.Then,wehave33.0and%5%33%10021epObviously,thesetwospecificationscannotbemetsimultaneously.(b)Inordertoreducepthegainmustbereduced.Choosingsec2.221ppttresultsin04.31k,57.01,%102%3.111ppRechoosingsec31.21.22ppttresultsin85.21k,59.01,%10.51.2%0.101ppLettingsec255.205.23ppttresultsin941.23k,583.03,%10.2505.2%5.103ppInthisway,acompromisevalueisobtainedas941.2kP3.10Acontrolsystemisrepresentedbythetransferfunction)13.04.0)(56.2(33.0)()(2ssssRsCEstimatethepeaktime,percentovershoot,andsettingtime(%5),usingthedominantpolemethod,ifitispossible.Solution:
RewritingthetransferfunctionasSolutions193.0)2.0)(56.2(33.0)()(22sssRsCwegetthepolesofthesystem:
3.02.021js,,56.23s.Then,21,scanbeconsideredasapairofdominantpoles,because)Re()Re(321ss,.Method1.Afterreducingtoasecond-ordersystem,thetransferfunctionbecomes13.04.013.0)()(2sssRsC(Note:
1)()(lim0sRsCks)whichresultsinsec/36.0radnand55.0.Thespecificationscanbedeterminedassec0.42112npt,%6.12%10021epsec67.2011ln12nstMethod2.Takingconsiderationoftheeffectofnon-dominantpoleonthetransientcomponentscausebythedominantpoles,wehavesec0.8411)(231npsst%6.13%10021313essspsec6.232ln1313ssstnsP3.11Bymeansofthealgebraiccriteria,determinethestabilityofsystemsthathavethefollowingcharacteristicequations.(a)02092023sss(b)025103234ssss(c)0210922345sssssSolution:
(a)02092023sss.Allcoefficientsofthecharacteristicequationarepositive.UsingL-Ccriterion,01609120202DThissystemisstable.(b)025103234ssss.Allcoefficientsofthecharacteristicequationarepositive.UsingL-Ccriterion,0153110025301103DThissystemisunstable.Solutions20(c)0210922345sssss.(ItsbettertouseRouthcriterionforahigher-ordersystem.)Allcoefficientsofthecharacteristicequationarepositive.EstablishtheRoutharrayasshown.Therearetwochangesofsigninthefirstcolumn,thissystemisunstable.P3.12Thecharacteristicequationsforcertainsystemsaregivenbelow.Ineachcase,determinethenumberofcharacteristicrootsintheright-halfs-planeandthenumberofpureimaginaryroots.(a)0233ss(b)0160161023sss(c)04832241232345sssss(d)0846322345sssssSolution:
(a)0233ss.TheRoutharrayshowsthattherearetwochangesofsigninthefirstcolumn.Sothattherearetwocharacteristicrootsintheright-halfs-plane.(b)0160161023sssThe1s-rowisanall-zerooneandanauxiliaryequationismadebasedon2s-row0162sTakingderivativewithrespecttosyields02sThecoefficientofthisnewequationisinsertedinthe1srow,andtheRoutharrayisthencompleted.Byinspection,therearenochangesofsigninthefirstcolumn,andthesystemhasnocharacteristicrootsintheright-halfs-plane.Thesolutionoftheauxiliaryare4js,thesystemhasapairofpureimaginaryroots.(c)04832241232345sssss.TheRoutharrayisestablishedasfollows.The1s-rowisanall-zerooneandanauxiliaryequationbasedon2s-rowis042sTakingderivativewithrespecttosyields02sThecoefficientofthisnewequationisinsertedinthe1srow,andtheRoutharrayisthencompleted.Byinspection,therearenochangesofsigninthefirstcolumn,andthesystemhasnocharacteristicrootsintheright-half5s1914s21023s402s1021s-0.800s23s1-32s0021s2300s23s1162s101160161s0200s165s112324s3124848613s411642s411641s0200s4Solutions21s-plane.Thesolutionoftheauxiliaryare2js,thesystemhasapairofpureimaginaryroots.(d)0846322345sssss.TheRout
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 中英文 对照 李道根 习题 题解
