自动控制原理(中英文对照-李道根)习题4.题解.pdf
- 文档编号:11592914
- 上传时间:2023-06-01
- 格式:PDF
- 页数:9
- 大小:156.24KB
自动控制原理(中英文对照-李道根)习题4.题解.pdf
《自动控制原理(中英文对照-李道根)习题4.题解.pdf》由会员分享,可在线阅读,更多相关《自动控制原理(中英文对照-李道根)习题4.题解.pdf(9页珍藏版)》请在冰点文库上搜索。
Solutions31SolutionsP4.1Sketchtherootlociforthefollowingopen-looptransferfunctionswhenk0.(a)3)(2()5()()(ssssksHsG,(b)4)(3)(1()5()()(sssssksHsG(c)84)3()()(2sssksHsG,(d)20020()20()()(2ssssksHsG(e)2)3()()(ssksHsGHere,“sketch”meansthatitisnotnecessarytofindtheexactpositionsofthepossiblebreakawaypointandtheintersectionwithj-axis,andtheexactvaluesofrelativeangles.Solution:
(a)3)(2()5()()(ssssksHsG.Byinspection,wehave01p,22p,33pand51z.Theintersectionofasymptotesis013)5()320(aandtheanglesofasymptotesare213)12(laThereisabreakawaypointonthereal-axissegment)02(,.Consideringthat5iips,dueto2mn,therootlocusdoesnotintersectwithj-axis.Therootlocusisplottedasshown.Solvingthebreakaway-pointequation015)25)10(0152510513121123ssssssssssyieldsthebreakawaypoint88.0bs.(b)4)(3)(1()5()()(sssssksHsG.Byinspection,wehave01p,12p,33p,44pand51z.Theintersectionofasymptotesis114)5()4310(aandtheanglesofasymptotesare,314)12(laTherearethreebreakawaypointsonthereal-axissegments:
)01(,,)34(,and)5(,.Therootlocusisplottedasshown.Solvingthebreakaway-pointequationSolutions32060190139353514131111234ssssssssswehave44.01bs,7.32bs,8.53bs.Thecharacteristicequationis0)2(198234ksksssSubstitutingjsintothisequationyields0)2(8019324kkwegettheintersectionofrootlocuswiththej-axis53.3c,where4.87ck.(c)2222)2()3(84)3()()(ssksssksHsG.Byinspection,wehave2221jp,and51z.Therootlocusinthecomplexplaneisapartofacirclewiththecenteratthezeroandaradiusofthelengthfromthezerotoonepole.Thereisabreakawaypointonthereal-axissegment,)3(,.Therootlocusisplottedasshown.Solvingthebreakaway-pointequation04631844222sssssswehave24.5bs.Or,511pz,24.553bs.Theanglesofdepartureoftherootlocusfromthecomplexpolesare4.15390232arctan180)()(18021111ppzpp,4.1532p(d)10)10()20()20020()20()()(222ssskssssksHsG.Byinspection,wehave01p,10103,2jpand201z.Theintersectionofasymptotesis013)20()10100(aandtheanglesofasymptotesare213)12(laThecharacteristicequationis020004004023sss.Iftherootlocushasbreakawaypoints,theclosed-loopsystemwillhaveathriceroot,i.e.arootwillsatisfy403sand20003ssimultaneously.Obviously,itisimpossible.Therootlocusisplottedasshown.Theanglesofdepartureoftherootlocusfromthecomplexpolesare0)()(18012122ppzpp,02pj010-20-10Solutions33(e)2)3()()(ssksHsG.Byinspection,wehave01p,332pp.Theintersectionofasymptotesis13330aandtheanglesofasymptotesare,33)12(laThereisabreakawaypointonthereal-axissegment)03(,.Therootlocusisplottedasshown.Solvingthebreakaway-pointequation0321ss,wehave1bs.Thecharacteristicequationis09623ksss.Substitutingjsintothisequationyields090632k,wegettheintersectionofrootlocuswiththej-axis3c,54ck.P4.2Consideraunityfeedbacksystemwith54)1()(2sssksG(a)Findtheanglesofdepartureoftherootlocusfromthecomplexpoles.(b)Findtheentrypointfortherootlocusasitenterstherealaxis.Solution:
1)2()1(54)1()(22ssksssksG.Byinspection,wehave122,1jpand11z.(a)Theanglesofdepartureoftherootlocusfromthecomplexpolesare22590135180)()(18021111ppzpp,2252p(b)Thebreakaway-pointequationisgivenby01211544222ssssssSolvingthisequationyields212,1s.Thereisonlyonebreakawaypoint21bs.P4.3Aunityfeedbacksystemhasaplanttransferfunction)14.005.0()(2sssKsGSketchtherootlocusasKvaries.Solution:
2)4()208()14.005.0()(2222ssKsssKsssKsG.Byinspection,wehave01pand243,2jp.TheintersectionofasymptotesisSolutions3467.2383440aandtheiranglesare,33)12(laSolvingthebreakaway-pointequation020163020882122sssssswegettwobreakawaypoints33.31bs,22bsThecharacteristicequationis020823Ksss.Substitutingjsintothisequationyields0200832K,wegettheintersectionofrootlocuswiththej-axis47.452c,160cKTherootlocusisplottedasshown.P4.4Acontrolsystemhastheopen-looptransferfunction)4()84()()(22ssssksHsGItisdesiredthatthedampingratioofthedominantpolesisequalto0.5.Usingtherootlocus,showthat35.7kisrequiredandthedominantpolesare2.23.1js.Solution:
Atfirstweplottherootlocus.Since)4
(2)2()4()84()()(22222ssskssssksHsGweget021pp,43pand222,1jz.Thecharacteristicequationis084)423kkssks(Itcanbeproventhatthereareneitherbreakawaypointnorintersectionwithj-axisfortherootlocus.Theanglesofarrivaloftherootlocustothecomplexzerosare45)()(180213111zzpzjiz,452zTherootlocusisplottedasshown.Assumingtheline5.0intersectswiththerootlocusatxjxjyxs31,wehave)12()()(311211lpszsjjii)12(43arctan322223arctan223arctanlxxxxxx5.0Solutions35xxxxxx43arctan3223arctan223arctan04424331433223223122322323xxxxxxxxxxxxxxx3.1x,2.23.1jsHence,2.23.1jsareapairofcomplexpoleswith5.0.Usingmagnitudeconditionwegetthatthegainfor5.0is34.708.3)42.27.0(2.27.2)2.23.1
(2)2(4222222222.23.1222jsssskFromthecharacteristicequationweget34.11)4(321ksss,74.83sTherefore,thedominantpolesare2.23.1js,because)Re(13ss.P4.5Aunityfeedbacksystemhas)5)(2()(sssksGFind(a)thebreakawaypointontherealaxisandthegainforthispoint,(b)thegainandtherootswhentworootslieontheimaginaryaxis,and(c)therootswhen6k.(d)Sketchtherootlocus.Solution:
(a)Solvingthebreakaway-pointequation051211ssswefindthebreakawaypoint88.0bs.(Anothersolutionofthisequationisnotontherootlocus.)Thegainforthispointis06.452bbbbsssk(b)Thecharacteristicequationis010723ksssSubstitutingjsintothisequationyields0100732k,wegettheintersectionofrootlocuswiththej-axis16.310c,70ckhence,whentworootslieontheimaginaryaxis,thegainis70kandtherootsare10js.(c)Inthecaseof6k,thecharacteristicequationis06107)(23ssssSincebkk6,thereareonerealrootonsegment)5,(andapairofcomplexroots,itisSolutions36notdifficulttofindthat0)34.5(,i.e.34.51sisarootofthisequation.Denotingjbas2,1,wehave83.07321asss66.06321bsssi.e.,inthiscasetheclosed-looprootsare34.51sand66.083.03,2js.(d)Therootlocusisplottedasshown,wherefortheasymptoteswehave33.2352a,3aP4.6Theopen-looptransferfunctionofaunityfeedbacksystemisgivenby)()1()(2asssksGDeterminethevaluesofasothattherootlocuswillhavezero,one,andtwobreakawaypoints,respectively,notcountingtheoneat0s.Sketchtherootlocifork0forallthreecases.Solution:
Solvingthebreakaway-pointequation02)3(211122asassasswehave4)9)(1()3(413)3()3(2aaaaaas(a)Inthecaseof9a,theequationhastworealrootsandbotharebreakawaypoints.Forexample,letting10aresulting5.21bsand42bs.Therootlocuswhen10aisplottedasshown,where5.4a,90a.(b)Inthecaseof9a,theequationhasatwiceroot3sanditisatwicebreakawaypoint.Therootlocuswhen9aisplottedasshown,where4a,90a.(c)Inthecaseof91a,theequationhasnorealrootsForexample,letting8aj0-1-10-4.5(a)Solutions37resultsintherootlocusasshown,where5.3a,90a.(d)Inthecaseof1a,thesolutionoftheequationis1s.Infact,inthiscaseabranchoftherootlocusbecomesapointat1s.Therootlocuswhen10aisplottedasshown,where5.4a,90a.(e)Inthecaseof1a,theequationhastworealroots,butneitherisbreakawaypoint.Forexample,letting5.0ayieldstworoots6.31sand39.12s,whicharenotontherootlocus.Therootlocuswhen5.0aisplottedasshown,where25.0a,90a.P4.7Thetransferfunctionsofanegativefeedbacksystemaregivenby)5)(2()(2sssksGand1)(sH(a)Sketchtherootlocusforthissystem.(b)Thetransferfunctionofthefeedbackloopisnowchangedto12)(ssH.Indicatethecrossingpointsofthelocusontheimaginaryaxisandthecorrespondingvalueofkatthesepoints.Determinethestabilityofthemodifiedsystemasafunctionofk.Investigatetheeffectontherootlocusduetothischangein)(sH.Solution:
(a)Therearefouropen-looppoles:
021pp,23pand54p,andthereisnozero.Fortheasymptoteswehave75.147a,135,45aSolvingthebreakaway-pointequation051212sssweget25.11s,13.42s,where13.4bsisabreakawaypoint.Sincetheclosed-loopsystemisconstructionalunstable,therootlocusdoesnotintersectwithj-axisfor0k.Therootlocusisplottedasshown.(b)Inthiscase,theopen-looptransferfunctionisgivenby)5)(2()5.0()5)(2()12()()(22sssskssssksHsG,kk2j0-1-8-3.5(c)j0-12.5-0.5(e)j0-1(d)Solutions38Theasymptotesarecenteredat17.235.6awithangles801,60a.Investigatingthebreakaway-pointequation5.01512122ssss0105.2016323sssweknowthattherootlocusdoesnothavebreakawaypoint.Substitutingjsintothecharacteristicequation0705.01005.0107324234kkksksssyields55.25.6c,5.45ck.Therootlocusisplottedasshown.Now,thesystemisstableonlywhen5.450k,i.e.75.220k.Aswesee,thestabilityoftheclosed-loopsystemisimprovedduetothechangein)(sH.P4.8Thecharacteristicequationofafeedbackcontrolsystemisgivenby042)5()(2kskssSketchtherootlocusasafunctionofk(positivekonly)forthissystem.Solution:
Rewritingthecharacteristicpolynomialas)2(4542)5()(22sksskskssyieldsaequivalenttransferfunction)4)(1()2(45)2()(2sssksssksGeTherootlocusisplottedasshown.P4.9Aunityfeedbacksystemhasaplant)1()(25.0)(2ssassGSketchtherootlocusassfunctionofa(positiveaonly)forthissystem.Solution:
Rewritingthecharacteristicpolynomialasasssassss25.025.0)(25.0)1()(232yieldsaequivalenttransferfunction22)5.0()25.0(25.0)(ssasssasGeUsingtherulesforplottingrootlocus,wehave33.031a,180,60a17.061bs;5.0cTherootlocusisplottedasshown.-5j0-2j0-0.5Solutions39P4.10Theopen-looptransferfunctionofacontrolsystemwithpositivefeedbackisgivenby)44()()(2sssksHsGSketchtherootlocusforthissystemwhenk0.Solution:
Theroot-locusequationisgivenby1)2(0)()(12ssksHsGusingtherulesforplotting0rootlocus,wehave33.134a,120,0aTherootlocushasneitherbreakawaypointnorintersectionwithj-axis.Therootlocusisplottedassh
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 中英文 对照 李道根 习题 题解
