自动控制原理(中英文对照-李道根)习题5题解.pdf
- 文档编号:11592878
- 上传时间:2023-06-01
- 格式:PDF
- 页数:16
- 大小:263.72KB
自动控制原理(中英文对照-李道根)习题5题解.pdf
《自动控制原理(中英文对照-李道根)习题5题解.pdf》由会员分享,可在线阅读,更多相关《自动控制原理(中英文对照-李道根)习题5题解.pdf(16页珍藏版)》请在冰点文库上搜索。
Solutions40SolutionsP5.1Theopen-looptransferfunctionofaunityfeedbacksystemis125)(ssG.Determinethesteady-stateoutputoftheclosed-loopsystemduetothefollowinginputsignals:
(a)30sin()(ttr,(b)452cos
(2)(ttrSolution:
Theclosed-looptransferfunctionandfrequencyresponseare625)
(1)()(ssGsGs226)2(5)(j,62arctan)(jrespectively.(a)Inthecaseof)30sin()(ttr,since1and300,wehave97.0410625)(22j,43.1962arctan)(jandthesteady-stateoutputis)57.11sin(97.0)43.1930cos(97.0)(tttc(b)When)452cos
(2)(ttr,since2and450,wehave39.113256)22(5)(22j,69.33622arctan)(jandthesteady-stateoutputis)69.782cos(39.1)69.33452cos(39.1)(tttcP5.2Theunit-stepresponseofasystemistteetc948.08.11)(,0tFindthefrequencyresponseofthesystem.Solution:
Theimpulseresponseandthetransferfunctionaretteettctk942.72.7d)(d)(,)9)(4(3692.742.7)(sssssRespectively.Hence,wehave)9)(4(36)(jjj22229436)(j,9arctan4arctan)(jSolutions41P5.3Plottheasymptoticlog-magnitudecurvesandphasecurvesforthefollowingtransferfunctions(a)15.0)(12
(1)()(sssHsG,(b)215.0)()(sssHsG,(c)1.0()2.0(10)()(2ssssHsG,(d)8()2(32)()(2ssssHsG,(e)254)(1()1.0(8)()(22sssssssHsGSolution:
(a)15.0)(12
(1)()(sssHsG(b)215.0)()(sssHsG(c)1.0()2.0(10)()(2ssssHsG(d)8()2(32)()(2ssssHsG)110()15(202sss)1125.0()15.0(82sssdb),(L1.011025.002040)(1.0110090180db),(L110202040)(1.0110090180db),(L1802040)(21009018020db),(L12.002040)(1.01009018027020Solutions42(e)254)(1()110(252)254)(1()110(50)()(2222sssssssssssssHsGP5.4Theasymptoticlog-magnitudecurvesofsomesystemsaregiveninFig.P5.4.Determinethetransferfunctionandsketchthecorrespondingasymptoticphasecurvesforeachsystem.Assumethatthesystemshaveminimumphasetransferfunctions.db),(L20204040402200020400201.01.015100204001.010006020201023102001050(a)(b)(c)(d)(e)(f)db),(Ldb),(Ldb),(Ldb),(Ldb),(L8020401200285.240200db25.215.2m201000603.45mdb85.4(g)(h)(i)db),(Ldb),(Ldb),(LFigureP5.4db),(L1502040)(1.01009018020360Solutions43Solution:
(a)Thisa0-pypesystem.(b)Thisa2-pypesystem.16.310lg20KK1.020lg20KK)205.0)(15.0(16.3)()(sssHsG)1()110(1.0)()(2ssssHsG(c)Thereisadifferentialfactor.1.020lg20KK(d)Thisa1-pypesystem.102.01.0)()(sssHsG1000602080lg20KK)101.0)(110()12.0(1000)()(sssssHsG(e)Thisa1-pypesystem.100K)101.0)(1100(100)()(ssssHsGdb),(L2040220010)(0180db),(L20401.010020)(018040db),(L2010500)(090db),(L208050)(0901.01004020180db),(L204001.01000)(018060Solutions44(f)Thereisadifferentialfactor.(g)Thisa0-pypesystem.11K102020lgKK)11)(11
(1)()(321ssssHsG55.2215.02025.21121lg2022nnm255250)()(2sssHsG(h)Thisa1-pypesystem.(i)Thisa1-pypesystem.102020lgKK100K52.0202821lg20n503.45213.085.4121lg2022nnm)25.6()1(5.62)()(2sssssHsG)250030(250000)()(2ssssHsGdb),(L20205.20)(09014018028db25.21205.2db),(L400)(090m180202013db),(L0)(090290100db),(L20db85.43.450)(090m60180270Solutions45P5.5Fig.P5.5showsthepolarplotsoftheopen-looptransferfunctionsofsomesystems.Determinewhethertheclosed-loopsystemsarestable.Ineachcase,pisthenumberoftheopen-looppoleslocatedintherighthalfs-plane,isthenumberoftheintegralfactorsintheopen-looptransferfunction.Solution:
ThestabilityofeachsystemwillbedeterminedbysketchinghalfcompleteNyquistplotandconsideringthedifferencebetweenpositiveandnegativecrossoversasvariesfromzerotoinfinite.(a)0,1P(b)0,1P221021pNN221210pNNThesystemisstable.Thesystemisunstable.(c)2,0P(d)2,0P2000pNN2110pNNThesystemisstable.Thesystemisunstable.(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)11pFigureP5.501j1p01j1p01j(c)20001j(d)200Solutions46(e)0,1P(f)1,1P221021pNN221210pNNThesystemisstable.Thesystemisunstable.(g)3,0P(h)1,2P2011pNN2101pNNThesystemisstable.Thesystemisunstable.(i)0,2P(j)0,1P2010pNN221210pNNThesystemisunstable.Thesystemisunstable.P5.6Sketchthepolarplotsofthefollowingopen-looptransferfunctions.Sketchonlytheportionthatisnecessarytodeterminethestabilityoftheclosed-loopsystems.DeterminethestabilityofthesystemsbyusingtheNyquistcriterion.(a)1)(25.0)(12.0(10)()(ssssHsG,(b)14.0)(21.0(100)()(ssssHsG,01j1p0001j11p0001j(g)32p0001j(h)101j2p01j(j)1pSolutions47(c)22)(1(10)()(2sssssHsG(d)4)(2(50)()(2ssssHsG(e)sssHsG2.01)()(Solution:
(a)1)(25.0)(12.0(10)()(ssssHsG.Byinspection,thephase-anglevariesfrom0to180,andwehave10)()(lim0jHjG,2700)()(limjejHjGLetting180)()(ggjHjG,i.e.180arctan5.0arctan2.0arctangggresultsinsec/rad17gand794.01171175.01172.010)()(22ggjHjGThepolarplotissketchedasshown.Since0pand000NN,theclosed-loopsystemisstable.(b)14.0)(21.0(100)()(ssssHsG.Byinspection,thephase-anglevariesfrom90to270,andwehave900)()(limjejHjG2700)()(limjejHjGLetting180)()(ggjHjG,i.e.1804.0arctan1.0arctan90ggresultsinsec/rad5gand81215.05100)()(22ggjHjGThepolarplotissketchedasshown.Since0pand110NN,theclosed-loopsystemisunstable.(c)22)(1(10)()(2sssssHsG.Byinspection,thephase-anglevariesfrom90to360,andwehave900)()(limjejHjG3600)()(limjejHjGLetting180)()(ggjHjG,i.e.1001j00801j005.401jSolutions4818022arctanarctan902gggresultsinsec/rad32gand5.43223221323210)()(22ggjHjGThepolarplotissketchedasshown.Since0pand110NN,theclosed-loopsystemisunstable.(d)4)(2(50)()(2ssssHsG.Byinspection,thephase-anglevariesfrom90to360.Itshouldbenotedthat412sisanoscillatoryelementwith0anditsphaseanglevariesfrom0to180suddenlyinthecaseof2.Todrawthepolarplot,somemagnitudesandphase-anglesarecalculatedasfollows.GHGH09017.451171.57.621271.924.461342.03151352.120.023162.52.783240360Then,thepolarplotissketchedasshown.Since0pand110NN,theclosed-loopsystemisunstable.(e)sssHsG2.01)()(.Byinspection,thephase-angle,variesfrom90to180,becausethephase-angleofs2.011is12.0arctanandvariesfrom0to90.Consideringthat900)()(limjejHjG1805)()(limjejHjGthepolarplotcanbeplottedasshown.Since1pand221021pNN,theclosed-loopsystemisstable.0001j01j5Solutions49P5.7Sketchthepolarplotsofthefollowingopen-looptransferfunctions,andfindthemaximumvaluefortheopen-loopgainsothatthesystemisstablebyusingtheNyquistcriterion.(a)4()()(2sssksHsG,(b)4()2()()(2sssksHsGSolution:
(a)4()()(2sssksHsG.Byinspection,thephase-anglevariesfrom90to270,andwehave900)()(limjejHjG2700)()(limjejHjGnotingthatthecornerfrequencyoftheoscillatoryelementjustisthephasecrossingfrequency,wehavesec/rad2ngand422)()(kkjHjGggThepolarplotissketchedasshown.Asshowninthepolarplot,thesystemisstableifandonlyif1)()(ggjHjG,i.e.4k.Sincetheopen-loopgainis4kK,thesystemisstableifandonlyif1K.(b)4()2()()(2sssksHsG.Therearetwointegralelements.Consideringthatthecornerfrequencyofthefirst-orderdifferentialelementislessthanthatoftheinertialelement,thepolarplotcanbedrawnasshown.Obviously,thesystemisalwaysunstableforanygivenopen-loopgain.P5.8Anegativefeedbacksystemhasanopen-looptransferfunction)10)(2()5.0()(2ssssksGPlottheBodediagramswithasymptoticcurvesanddeterminewhetherthesystemisstableusingtheNyquistcriterionfor10kand1000k,respectively.Solution:
Theopen-loopgainisgivenby40)(lim20ksGsKsHence,db1225.0lg20lg2010kKdb2825lg20lg201000kKandtheBodediagramcanbeplottedasshown01j4kgn01j2db),(L1202040)(1009018027020404060205.0Solutions50Inthecaseof10k,thereisnocrossoverinthephase-angleplotandthesystemisstable.Inthecaseof1000k,thereisanegativecrossoverandthesystemisunstable.P5.9Aunitynegativefeedbacksystemhastheopen-looptransferfunction)11.0)(105.0(7.11)(ssssGDeterminethecrossoverfrequencyandthephasemargin.Solution:
Letting1)(cjGyields22462227.110125.0005.07.111)1.0
(1)05.0(ccccccTofindc,let224627.110125.0005.0)(ccccfwehave09.135)1(f,01.113)10(f,07.103)5(f,01.15)8(f00.10)5.8(f,05.0)3.8(f,01.2)35.8(fTakingsec/3.8radcyields)3.81.0arctan()3.805.0arctan(90180)(180cjG8.277.395.2290Or,consideringthat101c,wehave22427.1101.07.111)1.0(ccccsec/79.8radc)79.81.0arctan()79.805.0arctan(90180)(180cjG0.253.417.2390P5.10Aclosed-loopsystemhastheopen-looptransferfunctionsKesGs)(a)DeterminethegainKsothatthephasemarginis60whens2.0.(b)PlotthephasemarginversusthetimedelayforKasinpart(a).Solution:
(a)Letting1)(cjGyieldsKKcc1hence,wehave632)(cccjG62.26cK(b)Inthecaseof62.2K,theopen-looptransferfunctionissesGs2.062.2)(.Then,6.020Solutions5162.222candtherequiredplotisdrawnasshown.P5.11Atime-delaysystemhastheopen-looptransferfunction)1()(ssesGs(a)Determinethetimedelaytomaintainstability.Solution:
Solvingthecrossoverfrequencyyields21501111)(2242ccccccjGrad/s79.0cThesystemisstableifandonlyif0,i.e.14.10arctan2ccHence,when14.1thesystemisstable.P5.12Thepolarplotofaconditionallystablesystem,foraspecificgain50K,isshowninFig.P5.12.(a)Determinewhetherthesystemisstable.Assumethattheopen-loopcharacteristichastheminimumphase.(b)FindtherangeofKsothatthesystemisstable.Solution:
(a)Itisassumedthattheopen-looptransferfunctionhastheminimumphase,i.e.0p.AhalfNyquistplotiscompletedasshown.Byinspection,inthecaseof50K,2011pNNthesystemisstable.(b)Themagnitude-phasecurvewillpassthepoint)0,1(jwhen5001.0501K,252502K,105503KThesystemisstableifandonlyif011NNor000NN.Therefore,thesystemisstablewhen10Kor50025K.P5.13Consideraunityfeedbacksystemwiththeopen-looptransferfunction21)(sssGDeterminethevalueofthatresultsinthesystemwithaphasemarginof45.Solution:
Letting45,i.e.45arctan180180cresultingin1c.Letting1)(cjGgets01j521.0FigureP5.1201j521.000Solutions5212112222cc84.0P5.14Consideraunityfeedbacksystemwiththeopen-looptransferfunction3)101.0()(sKsG(a)DeterminethevalueofKthatresultsinthesystemwithaphasemarginof45.(b)Determinethegainmargincorrespondingtothegainobtainedin(a).Solution:
(a)Solvingthecrossoverfrequency,wehave4501.0arctan4501.0arctan3180ccrad/
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 中英文 对照 李道根 习题 题解
