欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    35KV变电站防雷接地保护设计说明.docx

    • 资源ID:9492824       资源大小:205.54KB        全文页数:48页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    35KV变电站防雷接地保护设计说明.docx

    1、35KV变电站防雷接地保护设计说明35KV变电站防雷接地保护设计 摘 要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。本文就以农村某35KV变电站为研究对象,以国家防雷接地标准为依据且结合变电站具体情况,对变电站的防雷接地进展保护设计,具有一定代表性。首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以与学习各种防雷装置的根底上,采用设计避雷针并计算验证其保护围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,那么通过选择安装避雷器型号和设计变电站进线段的保护接线。最后在了解接地根本知识后,计算其接地电阻、最

    2、大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。关键词:35KV变电站; 直击雷防护; 雷电侵入波防护; 接地保护35KV substation lightning protection design of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning

    3、protection grounding protection measures taken is very important. This article on a 35KV substation in rural areas for the study to state Lightning grounding standards based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a c

    4、ertain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used

    5、to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the s

    6、egment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation;Direct stroke protection; Invasive wavel

    7、ightning protection ; Ground Protection 第1章 前言1.1课题的提出和意义在现代社会里,电力已成为国民经济和人民生活必不可少的二次能源,它在现代工农业生产、人们日常生活与各个领域中已获得了广泛应用。离开了电力,要想实现人类社会的物质文明和精神文明是根本不可能的;供不好电力,要实现国家的现代化也是办不到的。我国城乡各行各业广泛使用的电力,绝大局部由电网供给,所以,“电业事故是国民经济的一大灾难。随着电力工业的开展,自动化程度越来越高,对安全供电的要求也越来越高。为了防止各种电气事故,保障人民生产、生活的正常有序进展,电气安全已成为社会关注对象,各种电气安全

    8、措施也正在建立与完善。电气安全工作是一项综合性的工作,有工程技术的一面,也有组织管理的一面。工程技术和组织管理相辅相成,有着十分密切的联系。电气安全工作主要有两方面的任务。一方面是研究各种电气事故,研究电气事故的机理、原因、构成、特点、规律和防护措施;另一方面是研究用电气的方法解决各种安全问题,即研究运用电气监测、电气检查和电气控制的方法来评价系统的安全性或获得必要的安全条件。防雷接地技术不仅是电气安全工程技术的一方面,更是电气安全工作的重中之重。变电站是电力系统的心脏和枢纽,一旦遭受雷击,引起变压器等重要电气设备绝缘毁坏,不但修复困难,而且造成大面积、长时间停电,必然给国民经济带来严重损失,

    9、跟人民生活带来诸多不便。因此,变电站的防雷接地保护技术必须十分可靠。由于我国农村变电站大多建于旷野开阔的偏僻地区,附近高层建筑较少,是雷电的多发区,加之农村变电站一般是110KV以下的小型变电站,对变电站设计重视不够,考虑问题不尽全面,造成农村变电站成为易受雷击的“重灾区。近年来在农村变电站中屡次发生因雷电而造成设备破坏、爆炸甚至引起“火烧连营的事故:例如,2004年8月6日,某35KV变电站在雷电活动时造成该综合自动化插件损坏,并使35KV开关误动;2002年7月20日,某110KV变电站遭受雷击,高压设备安然无恙,该站保护装置电源模块损坏;2001年8月2日,某山区35KV变电站遭雷击,导

    10、致35KV母线避雷器爆炸,进线也有多处放电痕迹。像此类变电站遭受雷击例子还有很多,因此很有必要对农村变电站在目前防雷接地保护措施上,进展更系统化的防雷接地保护设计。本论文就以农村某35KV变电站为对象,对其进展防雷接地保护的设计。1.2国外研究现状长期以来,国外学者在雷电活动规律、雷击线路物理过程方面做了大量的研究工作,建立起较为完善的输电线路防雷理论体系。雷电流幅值、波形、地闪密度以与线路落雷次数对于分析线路防雷性能极为重要。上世纪70年代中期开展起来的基于磁场定位和时差定位原理的雷电定位系统,使雷电测量更为准确和与时。目前,雷电定位系统组成的雷电监测网络已在我国和北美、日本、国、欧洲等世界

    11、许多国家得到运用,它能帮助电力部门实现故障定位、分类、准确计算地面落雷密度等雷电参数,但雷电数据分散性较大,需要长期统计雷电数据。但总体上变电站的防雷安全形势不容乐观,主要表现在:一是社会公众防雷安全意识不强,对雷电灾害的危害性认识不够,存在幸运心理;二是随着社会经济的开展,雷电灾害的危害途径增多,防雷安全理念已发生巨大变化,不仅要有传统的防御直击雷,还要防感应雷的新时代,而许多措施仍然停留在传统的防雷阶段。1.3本课题的主要工作 1.3.1研究目标本课题是针对建在视野开阔的偏僻地区的35KV降压变电站进展防雷接地保护设计;根据变电站国家防雷接地标准,结合35KV变电站电气接线图以与具体情况,

    12、学习利用各种防雷接地装置等,实现对变电站的直击雷防护、雷电侵入波防护以与变电站的接地保护设计,具有一定广泛性。1.3.2主要研究容1、对雷电的产生、参数、危害等做到一个系统化了解掌握;学习各种用于变电站的防雷装置,包括避雷针、避雷线、避雷器等,它们的原理、作用以与保护围。2、采用各种相应的防雷装置,结合变电站实际情况,实现对变电站直击雷防护和雷电侵入波防护的设计。3、了解根本接地常识,结合变电站根本情况,实现对变电站的接地保护设计。1.4变电站防雷接地国家相关标准变电站是保证国民经济生产所需电能的供给中心,是要害部门,一旦遭受雷击破坏,其后果相当严重。故应按国家第一类建筑物标准作防雷保护。1、

    13、应装设独立避雷针或架空避雷线(网),使被保护的建筑物与风帽、放散管等突出屋面的物体均处于接闪器的保护围。架空避雷网的网格尺寸不应大于5m5m或6m4m。2、独立避雷针的杆塔、架空避雷线的端部和架空避雷网的各支柱处应至少设一根引下线。对用金属制成或有焊接、绑扎连接钢筋网的杆塔、支柱,宜利用其作为引下线3、独立避雷针和架空避雷线(网)的支柱与其接地装置至被保护建筑物与与其有联系的管道、电缆等金属物之间的距离,应符合以下表达式的要求,但不得小于3m: 1、地上局部:当hx5Ri时,Sa10.4(Ri+0.1hx) 当hx5Ri时,Sa10.1(Ri+hx) 2、地下局部:Se0.4Ri 式中 Sa1

    14、空气中距离(m);Se1地中距离(m); Ri独立避雷针或架空避雷线(网)支柱处接地装置的冲击接地电阻(); Hx被保护物或计算点的高度(m)。 4、独立避雷针、架空避雷线或架空避雷网应有独立的接地装置,每一引下线的冲击接地电阻不宜大于10。在土壤电阻率高的地区,可适当增大冲击接地电阻。 5、建筑物的设备、管道、构架、电缆金属外皮、钢屋架、钢窗等较大金属物和突出屋面的放散管、风管等金属物,均应接到防雷电感应的接地装置上。金属屋面周边每隔1824m应采用引下线接地一次。 6、平行敷设的管道、构架和电缆金属外皮等长金属物,其净距小于100mm时应采用金属线跨接,跨接点的间距不应大于30m;交叉净距

    15、小于100mm时,其交叉处亦应跨接。当长金属物的弯头、阀门、法兰盘等连接处的过渡电阻大于0.03时,连接处应用金属线跨接。对有不少于5根螺栓连接的法兰盘,在非腐蚀环境下,可不跨接。 7、防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10。屋接地干线与防雷电感应接地装置的连接,不应少于两处。 8、低压线路宜全线采用电缆直接埋地敷设,在入户端应将电缆的金属外皮、钢管接到防雷电感应的接地装置上。当全线采用电缆有困难时,可采用钢筋混凝土杆和铁横担的架空线,并应使用一段金属铠装电缆或护套电缆穿钢管直接埋地引人,其埋地长度应符合以下表达式的要求,但不应小于15m:在电缆与架空线连接处

    16、,尚应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10。 9、架空金属管造,在进出建筑物处,应与防雷电感应的接地装置相连。距离建筑物100m的管道,应每隔25m左右接地一次,其冲击接地电阻不应大于20,并宜利用金属支架或钢筋混凝土支架的焊接、绑扎钢筋网作为引下线,其钢筋混凝土根底宜作为接地装置。1.5本论文涉与的35KV变电站1.5.1变电站的概况此变电站为降压变电站与我国大多数农村变电站相似,建在视野开阔的偏僻地区,附近无高层建筑。占地面积长为50m,宽为40m。变电站最高点为20m,且当地平均雷电日为40。有三种规格的变压,分别为35/1

    17、0.5KV主变压器、35/0.4KV与10.5/0.4KV的形式。1.5.2变电站相关参数表1-1 35KV变电站相关参数 名称 型号规格 单位 容量KVA 数量 变压器 主KV Y/-11 台2500 1 变压器KV Y/Y0-12 台50 1 变压器KV Y/Y0-12 台30 1 氧化锌 避雷器Y5WZ-42/135G 只 3 电压互 感器JDJ2-35 35/0.1KV 只 11.5.3变电站电气主接线图 图1-1 35KV变电站电气接线图 第2章 雷电与防雷装置2.1雷电2.1.1雷电与其放电过程雷电是一种恐怖而又壮观的自然现象,这不仅在于它那划破长空的耀目闪电和令人震耳欲聋的雷鸣,

    18、重要的是它给人类生活带来巨大的影响。且不说雷电促成有机物质的合成可能在地球生命起源中占有一定的地位,以与雷电引起的森林火灾可能启发了远古人类对火的发现和利用;仅在现代生活中,雷电威胁人类的生命安全,常使航空、通讯、电力、建筑等许多部门遭受破坏,就一直引起人们对于雷电活动与其防护问题的关注。雷电放电是一种气体放电现象,由其引起的过电压,叫做大气过电压。它可以分为直击雷过电压和感应雷过电压两种根本形式。雷电放电是由于带电荷的雷云引起的。雷云带电原因的解释很多,但还没有获得比拟满意的一致的认识。一般认为雷云是在有利的大气和条件下,由强大的潮湿的热气流不断上升,进入稀薄的大气层冷凝的结果。强烈的上升气

    19、流穿过云层,水滴被撞分裂带电,轻微的水沫带负电,被风吹得较高,形成一些局部带正电的区域。雷云的底部大多数是带负电,它在地面上会感应出大量的正电荷。这样,在带有大量不同极性或不同数量电荷的雷云之间,或者雷云和之间形成了强大的电场,其电位差可达数兆伏甚至数十兆伏。随着雷云的开展和运动,一旦空间电场强度超过了大气游离放电的临界电场强度大气中约30kV/cm,有水滴存在时约10kV/cm时,就会发生云间或对的火花放电;放出几十乃至几百安的电流;产生强烈的光和热放电通道温度高达15000至20000,使空气急剧膨胀振动,发生霹雳轰鸣。这就是闪电伴随雷鸣,叫做雷电之故。大多数雷电发生在雷云之间,它对地面没

    20、有什么直接影响。雷云对的放电虽然只占少数,但是一旦发生就有可能带来严重的危险。这正是我们主要关心的问题。实测说明,对地放电的雷云绝大多数带负电荷,根据放电雷云的极性来定义,此时雷电流的极性也为负电荷。雷云中的负电荷逐渐积聚,同时在附近地面上感应出正电荷。当雷云与之间局部电场强度超过大气游离临界场强时,就开始有局部放电通道自雷云边缘向开展。这一放电阶段称为先导放电。先导放电通道具有导电性,因此雷云中的负电荷沿通道分布,并继续向地面延伸,地面上的感应正电荷也逐渐增多,先导通道开展临近地面时,由于局部空间电场强度的增加,常在地面突起处出现正电荷的先导放电向天空开展,称为迎面先导。当先导通道到达地面或

    21、者与迎面先导相遇以后,就在通道端部因大气强烈游离而产生高密度的等离子区,此区域自下而上迅速传播,形成一条高导电率的等离子通道,使先导通道以与雷云中的负电荷与的正电荷迅速中和,这就是主放电过程。与先导放电和主放电对应的电流变化同时表示时,先导放电开展的平均速度较低,约1.5105m/s,表现出的电流不大,约为数百安。由于主放电的开展速度很高,约为21071.5108m/s,所以出现甚强的脉冲电流,可达几十乃至二、三百千安。以上描述的是雷云负电荷向下对地放电的根本过程,可称为下行负闪电。在地面高耸的突起处如尖塔或山顶,也可能出现从地面开始的上行正先导向云中的负电荷区域开展的放电,称为上行负闪电。与

    22、上面的情况类似,带正电荷的雷云对地放电,也可能是下行正闪电,或上行正闪电。雷电观测说明,先导放电不是一次贯穿全部空间,而是间歇性的脉冲开展过程,称为分级先导。每次间隙时间大约几十微秒。而且,人们眼睛观察到的一次闪电,实际上往往包含屡次先导-主放电的重复过程,一般为23次,最多可达40屡次。发生多重雷电放电的原因可作如下解释。雷云是一块大介质,电荷在其部不容易运动,因此如前所述,在雷云积聚电荷的过程中,就可能形成假设干个密度较高的电荷中心。第一次先导主放电冲击,主要是泄放第一个电荷中心与其已传播到先导通道中的负电荷,这时第一次冲击放电过程虽已完毕,但是雷云两个电荷中心之间的流注放电已开始,由于主

    23、放电通道仍然保持着高于周围大气的导电率,由第二个与多个电荷中心开展起来的先导主放电以更快的速度沿着先前的放电通道开展,这就出现了屡次重复的冲击放电。实际观测说明,第二次与以后的冲击放电的先导阶段开展时间较短,没有分叉。观测还说明,第一次冲击放电的电流幅值最高,第二次与以后的电流幅值都比拟低,但对GIS变电站的运行可能造成一定程度的危险;而且它们增加了雷云放电的总持续时间,对电力系统的运行同样会带来不利的影响。带有大量电荷的雷云实测说明多为负极性,在其周围的电场强度达到使空气绝缘破坏的程度约2530kV/cm,空气开始游离,形成导电性的通道,通道从云中带电中心向地面开展。在先导通道开展的初级阶段

    24、,其方向受偶然的因素影响而不定。但当距离地面达某一高度时,先导通道的头部至地面某一感应电荷的电场强度超过了其它方向,先导通道大致沿其头部至感应电荷的集中点的方向连续开展,至此放电开展才有方向。如果配电网中的线路或设备遭受雷击时,将通过很大的电流,产生的过电压称为直击雷过电压。带有负电荷的雷云接近输电线路时,强大的电场在导线上产生静电感应。由于带有负电荷雷云的存在,束缚着导线上的正电荷。当雷云对导线附近地面物体放电后,雷云电荷被中和而失去对导线上电荷的束缚作用,电荷便向导线两侧流动,由此而产生的过电压称为感应过电压,其能量很大,对供电设备的危害也很大。2.1.2雷电参数 雷电参数是雷电过电压计算

    25、和防雷设计的根底,参数变化,计算结果随之而变。目前采用的参数是建立在现有雷电观测数据的根底上的,这些参数是:1、雷电日 为了统计雷电的活动频繁度,采用雷电日为单位。在一天只要听到雷声就算一个雷电日。每年的雪电日数相差较大,故采用的是多年平均值。我国的平均雷电日分布图可查阅电力设备过电压保护设计技术规程。 我国各地雷电日的多少和该地的纬度与距海洋的远近有关。省与雷州半岛雷电活动频繁而强烈,平均年雷电日高达100133,北纬23.6度以南,一般在80以上,北纬23.5度到长江一带约4080,长江以北大局部地区(包括东北)多在2044。西北多数地区在24以下。我国把平均雷电日不超过15的叫少雷区,4

    26、090的叫多雷区,超过90的叫强雷区。在防雷设计中,要根据雷电日的多少因地制宜。2、雷电流的波形和极性 实测结果说明,雷电流是单极性的脉冲波,这与前述雷电放电过程的原理解释是一致的。许多雷电流波形都是在峰值附近出现明显的双峰,波尾局部也有不太大的隆起。根据国外的实测统计,75%90%的雷电流是负极性的。因此电气设备的防雷保护和绝缘配合通常都是取负极性的雷电冲击波进展研究分析。3、雷电流的幅值、波头、波长和陡度 对于脉冲波形的雷电流,需要三个主要参数来表征。这三个参数为:幅值、波头和波长。幅值是指脉冲电流所达到的最高值;波头是指电流上升到幅值的时间;波长是指脉冲电流的持续时间。 幅值和波头又决定

    27、了雷电流随时间上升的变化率,称为雷电流的陡度。雷电流陡度对过电压有直接影响,也是常用的一个重要参数。1雷电流幅值的概率分布我国现行标准推荐按下式计算 (2-1) 式中:I是雷电流幅值,kA;P是 幅值等于大于I的雷电流概率。例如幅值等于和超过50kA的雷电流,计算可得概率为33%。上述雷电流幅值累积概率计算公式适用于我国大局部地区。对于雷电活动很弱的少雷地区(年平均雷电活动20日以下),例如陕南以外的西北地区与自治区的局部地区。雷电流幅值概率可按以下公式求得: (2-2)2雷电流的波头和波长虽然雷电流幅值随各国的自然条件不同而差异很大,但是各国侧得的雷电流波形却根本一致。据统计,波头长度大多在

    28、1s5s的围,平均2s2.5s。我国在防雷保护设计中建议采用2.6s的波头长度。 至于雷电流的波长,实测说明在20s100s围之,平均约为50s,大于50s的仅占18%30%。 根据以上分析,在防雷保护计算中,雷电流的波形可采用2.6/50s。(3)雷电流陡度 由于雷电流的波头长度变化围不大,所以雷电流的陡度和幅值必然密切相关。我用2.6s的固定波头长度,即认为雷电流的平均陡度石和幅值线性相关: (2-3)即幅值较大的雷电流同时也具有较大的陡度。 雷电流的各项主要参数-幅值、波头、波长和陡度的实测数据具有很大的分散性。许多研究者发表过各种结果,虽然根本规律大体相近,但其具体数值却有差异。其原因

    29、一方面在于雷电放电本身的随机性受到自然条件多种因素的影响;另一方面也在于测量条件和技术水平的不同。我国幅员辽阔,各地自然条件千差万别。雷电观测工作的根底还比拟薄弱,有待于进一步加强。4、雷电流极性与波形国外实测结果说明,75%90%的雷电流是负极性,加之负极性的冲击过电压波沿线路传播衰减,因此电气设备的防雷保护中一般按负极性进展分析研究。在电力系统的防雷保护计算中,要求将雷电流波形用公式描述,以便处理,经过简化和典型化可得以下三种常用的计算波形,如图2-1所示。(a)标准冲击波形 (b)等值斜角波头 (c)等值半余弦波头图2-1 雷电流的等值波形图2-1(a)标准波形,它是由双指数公式所表示的

    30、波形 2-4这种表示是与实际雷电流波形最为接近的等值波形,但比拟繁琐。当被击物体的阻抗只是电阻R时,作用在R上的电压波形u和电流波形i是一样的。双指数波形也取作冲击绝缘强度试验电压的波形,对它定出标准波前和波长为1.2/50s。图2-2-1b为斜角平顶波,其陡度可由给定的雷电流幅值I和波前时间定。斜角波的数学表达式最简单,便于分析与雷电流波前有关的波程,并且斜角平顶波用于分析发生在10s以的各种波过程,有很好的等值性。图2-2-1c为等值半余弦波,雷电流波形的波前局部,接近半余弦波,可用下式表达: 2-5这种波形多用于分析雷电流波前的作用,因为用余弦函数波前计算雷电流通过电感支路所引起压降比拟

    31、方便。还有在设计特高杆塔时,采用此种表示将使计算更加接近于实际。 5、雷电波阻抗(Z0)雷电通道在主放电时如同导体,使雷电流在其中流动同普通分布参数导线一样,具有某一等值波阻抗,称为雷电波阻抗(Z0)。也就是说,主放电过程可视为一个电流波阻抗Z0的雷电投射到雷击点A的波过程。假设设这个电流入射波为I0,那么对应的电压入射波。根据理论研究和实测分析,我国有关规程建议Z0取300左右。6、地面落雷密度雷云对地放电的频繁和强烈程度,由地面落雷密度来表小。是指每个雷电日每平方公里地面上的平均落雷次数。实际上,值与年平均雷电日有关。一般,大的地区,其值也较大。 关于地面落雷密度与雷电日数的关系,我国标准推荐采用国际大电网会议推荐标准: 2-6式中,Ng为每年每平方公里地面落雷数;Td雷电日数;由此可得: 2-7 对的地区,按我国标准取值。2.1.3雷击过电压产生的机理云对地放电的实质是雷云电荷向的突然释放。尽管雷云有很高的初始电位(估可达几百兆伏),可能使大气击穿,形成先导主放电,但是地而被击物体的电位并不取决于这一初始电位,而是取决于雷电流与被击物体阻抗的乘积(被击物体阻抗是指被击点与零电位参考点之间的阻抗)。所以,从电源的性质看,这相当于一个电流源的作用过程。 雷电放电的物理过程虽然是很复杂的


    注意事项

    本文(35KV变电站防雷接地保护设计说明.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开