欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译降低测量噪声的五个技巧.docx

    • 资源ID:9472647       资源大小:389.96KB        全文页数:14页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译降低测量噪声的五个技巧.docx

    1、外文翻译降低测量噪声的五个技巧附录A 外文资料翻译Five Tips to Reduce Measurement NoiseEnsuring measurement accuracy often means going beyond reading raw specifications in a data sheet. Understanding an application in the context of its electrical environment is also important for securing success, particularly in a noisy o

    2、r industrial setting. Ground loops, high common-mode voltages, and electromagnetic radiation are all prevalent examples of noise that can adversely affect a signal.There are many techniques for reducing noise in a measurement system, which include proper shielding, cabling, and termination. Beyond t

    3、hese common best practices, however, there is more you can do to ensure better noise immunity. The following five techniques serve as guidelines for achieving more accurate measurement results.A. Reject DC Common-Mode VoltageMaking highly accurate measurements often starts with differential readings

    4、. An ideal differential measurement device reads only the potential difference between the positive and negative terminals of its instrumentation amplifier(s). Practical devices, however, are limited in their ability to reject common-mode voltages. Common-mode voltage is the voltage common to both t

    5、he positive and negative terminals of an instrumentation amplifier. In Figure 1, 5 V is common to both the AI+ and AI- terminals, and the ideal device reads the resulting 5 V difference between the two terminals.Figure 1 An ideal instrumentation amplifier completely rejects common-mode voltages.The

    6、maximum working voltage of a data acquisition (DAQ) device refers to the signal voltage plus the common-mode voltage and specifies the largest potential that may exist between an input and earth ground. The maximum working voltage for most DAQ devices is the same as the input range of the instrument

    7、ation amplifier. For example, low-cost M Series DAQ devices such as the NI 6220 devices have a maximum working voltage of 11 V; no input signal can exceed 11 V without causing damage to the amplifier.Isolation can dramatically increase the maximum working voltage of a DAQ device. In the context of a

    8、 measurement system, “isolation” means physically and electrically separating two parts of a circuit. An isolator passes data from one part of the circuit to another without conducting electricity. Because current cannot flow across this isolation barrier, you can level-shift the DAQ device ground r

    9、eference away from earth ground. This decouples the maximum working voltage specification from the input range of the amplifier. For example, in Figure 2 the instrumentation amplifier ground reference is electrically isolated from earth ground.Figure 2 Isolation electrically separates the instrument

    10、ation amplifier ground reference from earth ground.While the input range is the same as that in Figure 1, the working voltage has been extended to 60 V, rejecting 55 V of common-mode voltage. The maximum working voltage is now defined by the isolation circuitry instead of the amplifier input range.F

    11、uel cell testing is an example application that requires high DC common-mode voltage rejection. Each individual cell may generate approximately 1 V, but a stack of cells may produce several kilovolts or more. To accurately measure the voltage of a single 1 V cell, the measurement device must be able

    12、 to reject the high common-mode voltages generated by the rest of the stack.B. Reject AC Common-Mode VoltageRarely do common-mode voltages consist of only a DC level. Most sources of common-mode voltage contain an AC component in addition to a DC offset. Noise is inevitably coupled onto a measured s

    13、ignal from the surrounding electromagnetic environment. This is particularly troublesome for low-level analog signals passing through the instrumentation amplifier on a DAQ device.Sources of AC noise may be broadly classified by their coupling mechanisms capacitive, inductive, or radiative. Capaciti

    14、ve coupling results from time-varying electric fields, such as those created by nearby relays or other measurement signals. Inductive or magnetically coupled noise results from time-varying magnetic fields, such as those created by nearby machinery or motors. If the electromagnetic field source is f

    15、ar from the measurement circuit, such as with fluorescent lighting, the electric and magnetic field coupling is considered combined electromagnetic or radiative coupling. In all cases, a time-varying common-mode voltage is coupled onto the signal of interest, most often in the range of 50-60 Hz (pow

    16、er-line frequency).An ideal measurement circuit has a perfectly balanced path to both the positive and negative terminals of an instrumentation amplifier. Such a system would completely reject any AC-coupled noise. A practical device, however, specifies the degree to which it can reject common-mode

    17、voltage with a common-mode rejection ratio (CMRR). The CMRR is the ratio of the measured signal gain to the common-mode gain applied by the amplifier, as noted by the following equation:Choosing a DAQ device with a better CMRR over a broader range of frequencies can make a significant difference in

    18、your systems overall noise immunity. For example, Figure 3 shows the CMRR for a low-cost M Series device compared with that of an industrial M Series device.Figure 3 The NI 6230 provides a much higher CMRR than the NI 6220 relative to earth ground.At 60 Hz, NI 6230 industrial M Series devices have 2

    19、0 dB greater CMRR than NI 6220 low-cost M Series devices. This is equivalent to a 10 times better attenuation of 60 Hz noise.Any application may benefit from rejecting 60 Hz noise. However, those with large rotating machinery or motors require noise immunity at higher frequencies. At 1 kHz, NI 6230

    20、devices reject noise 100 times better than NI 6220 devices, making them ideal for industrial applications.C. Break Ground LoopsGround loops are arguably the most common source of noise in data acquisition systems. Proper grounding is essential for accurate measurements, yet it is a frequently misund

    21、erstood concept. A ground loop forms when two connected terminals in a circuit are at different ground potentials. This difference causes a current to flow in the interconnection, which can produce offset errors. Further complicating matters, the voltage potential between signal source ground and DA

    22、Q device ground is generally not a DC level. This results in a signal that reveals power-line frequency components in the readings. Consider the simple thermocouple application in Figure 4.Figure 4 A differential thermocouple measurement with a grounded signal source can create a ground loop.Here, a

    23、n otherwise straightforward temperature measurement is complicated by the device under test (DUT) being at a different ground potential than that of the DAQ device. Though both devices share the same building ground, the difference in ground potential could be 200 mV or more if the power distributio

    24、n circuits are not properly connected. The difference appears as a common-mode voltage with an AC component in the resulting measurement.Recall that isolation is a means of electrically separating signal source ground from the instrumentation amplifier ground reference (see Figure 5).Figure 5 Isolat

    25、ion eliminates ground loops by separating earth ground from the amplifier ground reference.Because current cannot flow across the isolation barrier, the amplifier ground reference can be at a higher or lower potential than earth ground. You cannot inadvertently create a ground loop with this circuit

    26、. Using an isolated measurement device removes the ambiguity of properly grounding a measurement system, ensuring more accurate results.D. Use 4-20 mA Current LoopsLong cable lengths and the presence of noise in industrial or electrically harsh environments can make accurate voltage measurements dif

    27、ficult. As a result, industrial transducers that sense pressure, flow, proximity, and so on often emit current signals instead of voltage. A 4-20 mA current loop is a common method of sending sensor information over long distances in many process-monitoring applications, as shown in Figure 6.Figure

    28、6 An instrumentation amplifier uses a shunt resistor to convert process current signals into voltage.Each of these current loops contains three components a sensor, a power source, and one or more DAQ devices. The current signal from the sensor is typically between 4 and 20 mA, with 4 mA representin

    29、g the lowest signal value and 20 mA representing the maximum. This transmission scheme has the advantage of using 0 mA to indicate an open circuit or bad connection. Power supplies are typically in the range of 24 to 30 VDC, depending on the total amount of voltage dropped along the circuit. Finally

    30、, the DAQ device uses a high-precision shunt resistor between the leads of the instrumentation amplifier to convert the current signal into a voltage measurement. Because all the current that flows from one lead of the power supply must return to the other, current loop signals are immune to most so

    31、urces of electrical noise and voltage (IR) drops along extensive cable lengths. Furthermore, the leads that provide power to the sensor also carry the measurement signal, greatly simplifying field wiring.An isolation barrier such as the one shown in Figure 6 provides two main benefits in current loo

    32、p applications. First, because power supply voltages typically exceed the maximum input range of most instrumentation amplifiers, isolation is essential for level-shifting the amplifier ground away from earth ground to an acceptable voltage. Second, current loops operate on the principal that curren

    33、t never leaves the circuit. Therefore, isolating the current loop from any path to ground prevents degradation of the signal. Devices such as the NI 6238 and NI 6239 industrial M Series DAQ devices provide a built-in shunt resistor and up to 60 VDC of isolation from earth ground for 4-20 mA current loop ap


    注意事项

    本文(外文翻译降低测量噪声的五个技巧.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开