欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    智能控制习题答案Word文档格式.docx

    • 资源ID:849249       资源大小:35.87KB        全文页数:34页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    智能控制习题答案Word文档格式.docx

    1、同级控制器并行工作,也可以有信息交换,但不是命令。3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要。级别越往上,其决策周期越长,更关心系统的长期目标。 4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策。学习控制系统 :靠自身的学习功能来认识控制对象和外界环境的特性,并相应地改变自身特性以改善控制性能的系统。这种系统具有一定的识别、判断、记忆和自行调整的能力。3比较智能控制与传统控制的特点。智能控制与传统控制的比较 :它们有密切的关系,而不是相互排斥。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,

    2、力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。1.传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,这些问题对基于模型的传统自动控制来说很难解决。2.传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、 图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息 . 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的

    3、形象、 声音的组合以及外界其它的情况 . 为扩大信息通道, 就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置。3.传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统) ,要么使输出量跟随期望的运动轨迹(跟随系统),因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂。4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意 . 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。5.与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、

    4、被控对象及环境的有关知识以及运用这些知识的能力。6.与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式。7.与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力。8.与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力。4把智能控制看作是 AI( 人工智能 )、 OR( 运筹学 )、 AC( 自动控制 )和 IT( 信息论 )的交集,其根据和内涵是什么 ?智能控制具有明显的跨学科特点,在最早傅金孙提出的二元论中,智能控制系统被认为是自动

    5、控制与人工智能的交互作用,随着认识的深入,萨瑞迪斯提出运筹学融入智能控制而提出三元结构,蔡自兴教授提出将信息论引入智能控制,其依据在于:信息论是解释知识和智能的一种手段;控制论、信息论和系统论是紧密相连的;信息论已经成为控制智能机器的工具;信息论参与智能控制的全过程并对执行级起到核心作用,因此最终确定了智能控制的四元结构。5智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。智能控制应用于机器人、汽车、制造业、水下和陆地自助式车辆、家用电器、过程控制、电子商务、医疗诊断、飞行器、印刷、城市铁路、电力系统等领域。例如焊接机器人其基本工作原理是示教再现,即由用户导引机器人,一步

    6、步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数、焊接参数等,并自动生成一个连续执行全部操作的程序。完成示教后,只需给机器人一个起动命令,机器人将精确地按示教动作,一步步完成全部操作,实际示教与再现。控制性能为:弧焊机器人通常有五个自由度以上,具有六个自由度的弧焊机器人可以保证焊枪的任意空间轨迹和姿态。点至点方式移动速度可达 60m/min 以上,其轨迹重复精度可达到 0.2mm。这种弧焊机器人应具有直线的及环形内插法摆动的功能, 共六种摆动方式, 以满足焊接工艺要求, 机器人的负荷为 5kg。第二章 模糊控制的理论基础1 举例说明模糊性的客观性和主观性。

    7、模糊性 起源于事物的发展变化性,变化性就是不确定定性;模糊性是客观世界的普遍现象,世界上许多的事物都具有模糊非电量的特点。例如:年龄分段的问题;如果一个人的年龄大于 60 岁算老年, 45-59 岁之间的岁中年,小于44 岁的就算青年; 如果一个人的年龄是 59 岁零 11 个月零 28 天,那么他是属于中年还是老年呢?理论上从客观的角度说他是中年人,但是与 60 岁只有两天区别,这区别我们是分辨不出来的。从主观上我们认为他又是老年人。这就是模糊性的主观性和客观性的体现。2 模糊性与随机性有哪些异同? 模糊性 处于过渡阶段的事物的基本特征,是性态的不确定性,类属的不清晰性,是一种内在的不确定性

    8、;而 随机性是在事件是否发生的不确定性中表现出来的不确定性,而事件本身的性态和类属是确定的,是一种外在的不确定性。相同点 是:模糊性是由于事物类属划分的不分明而引起的判断上的不确定性;而随机性是由于天剑不充分而导致的结果的不确定性。但是他们都共同表现出不确定性。异同点 是:模糊性反映的是排中的破缺,而随机性反映的是因果律的破缺;模糊性现象则需要运用模糊数学,随机性现象可用概率论的数学方法加以处理。3 比较模糊集合与普通集合的异同。模糊集合用隶属函数作定量描述,普通集合用特征函数来刻划。两者相同点 :都属于集合,同时具有集合的基本性质。两者异同点 :模糊集合就是指具有某个模糊还年所描述的属性的对

    9、象的全体,由于概念本身不是很清晰,界限分明的,因而对象对集合的隶属关系也不是明确的;普通集合是指具有某种属性的对象的全体,这种属性所表达的概念应该是清晰的,界限分明的,因而每个对象对于集合的隶属关系也就是明确的。4.考虑语言变量: “ Old ”,如果变量定义为:x50old ( x)211001 ( x 50 / 5)确定“ NOT So Old ”,“ Very Old ”,“ MORE Or LESS Old”的隶属函数。解:NOT So old ( x)1 x 5050 x 100Very old ( x)MORE or less old ( x)( x 50 / 5)4A 0.7 0

    10、.1 0.40.5 0.8 0.1 0.25.已知存在模糊向量 A 和模糊矩阵 R 如下: 计算 B A R 。R 0.6 0.4 0 0.10 0.3 0.6 0.36. 令论域 U 1 2 3 4 ,给定语言变量“ Small ”=1/1+0.7/2+0.3/3+0.1/4 和模糊关系 R=“ Almost 相等”定义1 0.6 0.1 00.6 1 0.6 0.1如下: R0.10.6利用 max-min 复合运算,试计算: R( y) ( X是 Small ) ( Almost 相等)。()0.70.30.1)R y (1(11)(0.70.6)(0.3(0.1T0)0.80.20.4

    11、0.97. 已知模糊关系矩阵:R计算 R 的二至四次幂。0.5 R2R?R30.4 R4R2 ?R28. 设有论域 X x1 ,x2 ,x3 ,Y y1 ,y2 ,y3 ,Z z1 ,z2 ,二维模糊条件语句为“若A且 B则 C”,其中A,F(X)x1x2x3A*BF (Y) 已知y1y2y3B *B*F(Y)CF(Z)z1z2由关系合成推理法,求得推理结论C *令 R 表示模糊关系,则C .R1TAT将 R1T0.6 0.1按行展开写成列向量为所以, R.又因为 CR ,0.5 ,将 AB 按行展开写成行向量,为0.1 ,则 CR 0.4即 C9. 已知语言变量 x, y, z。X 的论域为

    12、 1,2,3 ,定义有两个语言值:“大” 0, 0.5, 1 ;“小” =1, 0.5, 0 。Y 的论域为 10,20,30,40,50 ,语言值为:“高” =0, 0, 0, 0.5, 1 ;“中” =0, 0.5, 1, 0.5, 0; “低” =1, 0.5, 0, 0, 0 。Z 的论域为 0.1,0.2,0.3 ,语言值为: “长” =0, 0.5, 1 ;“短” =1, 0.5, 0则: 1)试求规则:如果 x 是 “大” 并且 y 是“高” 那么 z 是“长”;否则,如果 x 是“小” 并且 y 是 “中” 那么 z 是“短”。所蕴涵的 x, y, z 之间的模糊关系 R 。2

    13、)假设在某时刻, x 是“略小” =0.7, 0.25, 0 , y 是“略高” =0, 0, 0.3, 0.7, 1试根据 R 分别通过 Zadeh 法和 Mamdani 法模糊推理求出此时输出 z 的语言取值。第三章 模糊控制1.模糊控制器有哪几部分组成?各完成什么功能?1:模糊控制器由 四个部分 组成,这四个功能模块是模糊化、知识库、模糊推理和去模糊化。(1)模糊化 :为实现模糊控制而将精确的输入量进行模糊化处理,是将精确量转化为模糊量的过程。模糊化模块在不同的阶段有不同的作用: a、确定符合模糊控制器要求的输入量和输出量。 b、对输入输出变量进行尺度变换,使之落于各自的论域范围内。 c

    14、、对已经论域变换的输入量进行模糊化处理,包括模糊分割和隶属函数的确定。(2)知识库 :知识库通常由数据库和规则库组成,包含了具体应用领域的知识和要求。其中,数据库主要包含输入输出变量的初度变换因子、输入输出空间的模糊分割以及模糊变量的模糊取值及相应的隶属度函数选择和形状等方面的内容。规则库包含了用模糊语言描述专家的经验知识,来表示一系列控制规则。它们反映了控制专家的经验和知识。(3)模糊推理 :是一种近似推理,根据模糊控制规则库和当前系统状态推断出应施加的控制量的过程,由推理机完成。(4)去模糊化 :由于控制器输出到具体地执行机构的信号必须是清晰的精确量。因此,需要一个与输入模糊化相反的过程,

    15、即把模糊推理结果转变成清晰量,它实现从输出论域上输出模糊空间到输出精确空间的映射。2.模糊控制器设计的步骤怎样?2: 模糊控制器设计的 步骤如下 :(1):输入变量和输出变量的确定。(2):输入输出变量的论域和模糊分割,以及包括量化因子和比例因子在内的控制参数的选择。(3):输入变量的模糊化和输出变量的清晰化。(4):模糊控制规则的设计以及模糊推理模型的选择。(5):模糊控制程序的编制。3.清晰化的方法有哪些?3:答 :清晰化的方法 一般有四种:最大隶属度法 :这种方法将模糊推理得到的结论中最大隶属度值最对应的元素作为控制器输出的精确值,如果有多个最大点,则取其平均值。加权平均法 :这种方法是

    16、指以各条规则的前件和输入的模糊集按一定法则确定的值为权值,并对后件代表值加权平均计算输出的清晰值的方法。面积等分法 :把输出的模糊集合所对应的隶属函数与横坐标之间围成的面子分成两部分,那么该方法得到的精确值应满足使该两部分的面积相等。由于 Tsukamoto 模型和 Takagi-Sugeno 模型 输出本身就是清晰量,则不需要去模糊化。4.已知某一炉温控制系统,要求温度保持在 600 度恒定。针对该控制系统有一下控制经验:( 1)若炉温低于 600 度,则升压;低得越多升压就越高。( 2)若炉温高于 600 度,则降压;高得越多降压就越低。( 2)若炉温等于 600 度,则保持不变。设计模糊控制器为


    注意事项

    本文(智能控制习题答案Word文档格式.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开