欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    汽车倒车防撞自动测距报警系统设计文档格式.doc

    • 资源ID:8441888       资源大小:525.67KB        全文页数:16页
    • 资源格式: DOC        下载积分:12金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    汽车倒车防撞自动测距报警系统设计文档格式.doc

    1、图1 TOF 原理图在第二节,我们介绍两个我们开发的超声波测距系统,。其障碍物检测的可用性在第三节验证,声纳地图制作使用在第四部分。最后,给出的结论是在第五节。 两个超声波测距系统图2显示了反射波的模型,其中有两个对象在视野中。随着一个超声波的衰减和传播,反射回波幅度越远,对象就较小(甚至来自同一对象)。由于我们使用的压电式超声波传感器,我们分别使用一个发射器和接收器。因此,收到的波,包括从发射器接收的直接波必须被忽视。我们已经开发出一种超声波测距系统A,其中一个根本的方法是采用以下的4 3。超声波是由具有长爆破波的发射器发出,为了压电振子充分振动。一个范围值的计算方式是使用扩增回声飞行时间和

    2、阈值法水平。检测回声的阈值恒定不变,以简化电路。A系统每个信号的概念如图3所示。但是,这种系统存在一些问题。首先,回波信号是缓慢上升,然而回波信号强度没有那么大。因此,易造成测量误差。为了减少这种测量误差,超声波必须加速增加。其次,测量范围是有限的,它由固定阈值水平决定。当级别设置较高时,不可能检测远距离物体。或者它当级别设置为低时可能检测出近距离的噪声。此外,喇叭连接到A体系中增加波强度。然而,它使方向性狭窄。图2反射波的模型图3 A系统信号的概念为了解决A系统的问题,我们改进了发送和接收电路,开发了一种新型超声波传感器系统B。B系统每个信号的概念如图4所示。为了扩大回波信号的强度,加快了它

    3、的增加,一个单脉冲高电压用于发射器。峰值电压约为720V,尽管它在系统A中是 12V的。这种方法有以下好处。首先,掩蔽时间随着传送时间的缩短可缩短。因此,它可以测量近距离物体。其次,通过利用高电压超声波脉冲发射,发射波上升时间缩短了。因此,测量误差可减少。对于接收,阈值水平随时间递减,并逐步适应回波振幅减少随距离增加。我们把这种方法称为时间阈值控制。此方法对于近处物体具有很强的噪声,而且可以测量较远距离的对象。宝丽来超声波测距定位传感器解决了随时间变化的放大系数这个问题。这就是所谓的时间增益控制。但电路复杂。为了以一个简单的电路解决这个问题,而不是放大因素,阈值水平应随时间变化。系统B增加衡量

    4、的范围,减少测量误差,并以一个简单的电路提高测量性能。图4 B系统信号的概念图5 A系统获取的信号举例图5显示了由A系统获得的回声信号的例子。左边是一个直接波,右边是一个回音。在这种情况下,如果忽视了直接波,这时附近返回回声的物体则无法测量。此外,由于超声波缓慢上升造成测量误差。图6显示了由B系统获得的回声信号的例子。其表明直接波缩短,以及超声波上升时间也缩短。图7显示了B系统中的放大接收信号和阈值水平。接收波在4V左右达到饱和。直接波通过起初设置高的阈值水平被忽略。在此之后,阈值水平随时间递减。 图6 B系统获取的信号举例图7 B系统中放大的接收信号及极限值举例 障碍物检测为了检测前面提到的

    5、两个超声波测距系统障碍物检测的实用性,我们测量了一个反射物体宽度的最大量测距离。传统的系统连接到角,以增加回波强度。我们测量的最大范围,而这些数据可以检测对象与实际距离误差。实验设置如图8,实验结果如图9所示。在图9,系统A的结果在图形下方,系统B在图形上方。实线表示测量值,虚线表示的到物体的实际距离。如图所示在A和B两个系统中,如果反射物体的宽度小于10厘米其可测量的距离锐减。不过,这个数字表明,系统B在不使用喇叭时可以比系统A测量得更远,而且系统B与实际物体的误差比A小。我们得出结论可靠性和测量性能的改善B系统实现。在许多情况下,超声波传感器连接到一个喇叭,以增加换能器视线内波的强度,所以

    6、方向性变窄。窄指向性是为了更好地知道确切存在障碍的方向。然而,只有障碍物垂直于换能器的视线内,其才可以被检测到。了解障碍物存在与否及有多远对于移动机器人的障碍物检测很重要。因此,如图10所示宽指向性对于障碍物检测也很需要。带有喇叭的系统B较系统A可以获得较多的敏感性,因此,在下一节验证系统B的指向性可以较宽,并提供更适合的障碍检测。 图8 反射物体宽度的最大量测距离实验设置 图9 反射物体宽度的最大量测距离实验结果图10 障碍物检测的超声波测距方向性 声纳地图理解我们调查了使用两个超声波测距系统制作的环境地图。该地图的制作方法是为将一定范围的数据沿传感器放置在一个方向测量范围内。其有围墙和直角

    7、弯道(凸,凹)。A系统使用了一个喇叭,以增加其强度。每个系统都安装在我们的移动机器人“YAMABICO”上5(图11),以及该系统的旋转方向是由机器人改变。实验环境如图12,系统A和B的实验结果分别显示在图13和14中。这些传感器被放在原点(0,0)。图11系统B安装在移动机器人“YAMABICO”上。右侧是一个方向的发送和接收电路(70毫米*60毫米),左边是为4个发送和接收电路供电的高电压电路(70毫米*72毫米)。传感器直接连接到电路板,没有喇叭。图12实验环境。传感器被置于0点 图13表明系统A只可以检测到传感器视线内到墙的垂直回声。因为此系统中回声信号的强度很低,而且当回声从传感器反

    8、射回来时,其信号幅度无法超过其极限值。作为一个结果,看来这个系统有一个狭窄的方向性。另外,当传感器的线路和围墙的法线方向角变大时,回波强度变小。然后,后来的回声振幅超过一个阈值水平。因此,该区域的数据显示在圆与墙的接触弧上,其中心在墙外。与上述相比,图14表明,系统B可以检测在每一个方向的回声,由于在这个系统中的回波信号的强度足够大。从这个图形可以看到,该系统B指向性宽,由于距离数据躺在一个传感器与圆的弧线上且其中心在传感器上。因此,当一个机器人移动,障碍是可以检测到的,即使他们没有垂直面对到换能器的视线。因此,系统B可以改善检测障碍物的能力。 结论从上述结果可以得到以下结论:障碍物检测的性能

    9、随着不同传感器系统变化。传感器的指向性不仅取决于换能器得方向性,而且取决于传感器的敏感性。由此得到的声纳地图形状急剧变化,根据传感器的特点,如灵敏度,方向性等。声纳地图的认识应当做到细心,因为声纳地图形状可能在很大程度上与真实的环境不符合。如果机器人感知能力与人类几乎无异,我们可以信任机器人。不幸的是,几乎大多数的电流传感器并没有那么聪明,而且能力是有限的。因此,我们必须小心处理机器人的存在。图13 系统A 的合成声纳地图 图14 系统B 的合成声纳地图Obstacle Detectability of Ultrasonic Ranging Systemand Sonar Map Unders

    10、tandingAbstractInformation obtained by the ultrasonic sensor is influenced by the characteristics of the sensing system such as sensitivity, directivity and so on. In order to investigate its influence, we constructed two ultrasonic ranging systems of which characteristics differs from each other an

    11、d examined their performance such as obstacle detectability and resultant sonar map.Keywords: Ultrasonic Sensing, Obstacle Detection, Sonar MapI. IntroductionFor mobile robots, functions which recognize environments are required to find unpredictable obstacles and paths through which the robot can p

    12、ass, whether having an environmental map or not. As for range sensors, which can measure a distance to objects, ultrasonic sensor is more commonly used with mobile robots because it is small, inexpensive and easy to calculate distances.Present ultrasonic sensor systems generally calculate distance u

    13、sing the time-of-flight (TOF) method. The distance l to a reflected object is calculated by l =c t/2; (1) where c is the speed of sound, and t is the round-trip time-of-flight (Fig. 1). The TOF method produces a range value when the echo amplitude first exceeds the threshold level after transmitting

    14、. In spite of the simple method like this, information obtained by the ultrasonic sensor is influenced by the characteristics of the sensing system, it of environment and so on.In this paper, in order to investigate the influence of the sensor system, we constructed two ultrasonic ranging systems of

    15、 which characteristics differs from each other and examined their performance such as obstacle detectability and resultant sonar map.In section II, we introduce two ultrasonic ranging systems which we developed. Their availability for obstacle detection is examined in section III, sonar map making u

    16、sing them in section IV. Finally, the conclusions are presented in section V. Fig. 1. The principles of the time-of-flight (TOF) methodII. Two Ultrasonic Ranging SystemsFig. 2 shows a model of reflected waves, where there are two objects in a field of view. As an ultrasonic wave attenuates and sprea

    17、ds, the echo amplitude reflected off farther object is smaller (even from the same object2). Because we use piezoelectric ultrasonic sensors, we use a transmitter and a receiver separately. So, the received waves include the direct wave from the transmitter which must be neglected.We have developed

    18、a ultrasonic range finding system A in which the following fundamental method is employed43. Ultrasonic waves are discharged from a transmitter given comparatively long burst waves in order to vibrate its piezoelectric vibrator fully. A range value is calculated by TOF method using the amplified ech

    19、o and a threshold level. The threshold level to detect echoes is constant in order to simplify the circuit. The concept of each signal for System A is shown in Fig. 3. However, this system has some problems. First, the rise of echo signal is slow, since the intensity of the echo signal is not so lar

    20、ge. So measuring errors result. To reduce such measuring errors, the rise of ultrasonic waves must be quickened. Next, the measuring range is limited by a fixed threshold level. It is impossible to detect far distance objects when the level is set higher, or it is likely to detect noise from near di

    21、stance objects when the level is set lower. Also, horns are attached to System A to increase the intensity of waves. However, it makes the directivity narrow. Fig. 2. A model of reflected waves.To solve the problems of System A, we improved the transmit and receive circuit, and developed a new ultra

    22、sonic sensor system B. The concept of each signal for System B is shown in Fig. 4. In order to enlarge the intensity of echo signal and quicken the rise of it, a high voltage single pulse is employed for transmitting. The peak voltage is about 720V, while it is about 12V in System A. This method has

    23、 the following benefits. First, themasking time can be shortened by shortening the transmitting time. Thus it is possible to measure near distances. Second, the rise time of transmitting waves is shortened byusing a high voltage for discharging ultrasonic pulses. Therefore the measuring errors can b

    24、e reduced. For receiving, the threshold level is decreased with time, and is gradually adjusted to the echo amplitude decreasing with the distance. We call this method timethreshold-control. This method is robust to noises from close objects, and makes it possible to measure far distance object. The

    25、 Polaroid ultrasonic range sensor1 solves this problem by changing the amplification factor with time. This is called time-gain-control. But the circuit is complicated. To solve this problem with a simple circuit, not the amplification factor but the threshold level should be varied with time. Syste

    26、m B realizes increases in the measurable range, decreases measuring errors, and increases measuring performance with a simple circuit.Fig. 5 shows an example of echo signal obtained by System A. The left one is a direct wave, and the right is an echo. In this case, if ignoring the direct wave, it wa

    27、s impossible to measure near objects whose echo returns in this time. Also, measuring errors resulted because of slow rise of ultrasonic wave. Fig. 6 shows an example of echo signal obtained by System B. It shows that the direct wave is shortened, and the rise time of ultrasonic waves is also shorte

    28、ned. Fig. 7 shows the amplified received signal and the threshold level in System B. The received waves are saturated around 4V. The direct wave is ignored by making threshold level high at first. After that, the threshold level is decreased with time.Fig. 3. The concept of each signal for System A.

    29、Fig. 4. The concept of each signal for System B.Fig. 5. An example of echo signal obtained by System A.Fig. 6. An example of echo signal obtained by System B.Fig. 7. An example of the amplified received signal and the threshold level in System BIII. Obstacle DetectabilityTo examine the availability

    30、for obstacle detection of two ultrasonic ranging systems mentioned in previous section, we measured the relation of the maximum measurable distance to the width of a reflected object. The conventional system is attached to a horn to increase the intensity of echoes. We measured the maximum range data to the object which can be detected, and errors to the real distance. The experimental set-up is shown in Fig. 8, and the experimental results are shown in Fig. 9. In Fig. 9, the result of System A is below


    注意事项

    本文(汽车倒车防撞自动测距报警系统设计文档格式.doc)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开