欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    光电探测器的发展现状及分析Word文档下载推荐.docx

    • 资源ID:5744978       资源大小:59.27KB        全文页数:21页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    光电探测器的发展现状及分析Word文档下载推荐.docx

    1、2.1外光电效应外光电效应是指在光电子发射效应中,材料吸收了大于红外波长的光子能量以后,材料中的电子逸出材料表面的现象。在外光电效应中,光电子发射效应与光电子倍增效应被应用于制作光电探测器。2.1.1光电子发射效应光电管金属或半导体受光照射时,如果入射光子能量足够大,它和物质中的电子相互作用,致使电子逸出物质表面,这就是光电子发射效应。光电管是基于光电子发射效应的基本光电转换元件,可分为真空光电管和充气光电管。(1)结构真空光电管由玻壳、光电阴极和阳极三部分组成,光电阴极即半导体光电发射材料,涂于玻壳内壁,受光照时,可向外发射光。阳极是金属环或金属网,置于光电阴极的对面,加正的高电压,用来收集

    2、从阴极发射出来的电子。充气光电管(又称离子光电管)由封装于充气管内的光阴极和阳极构成。它不同于真空光电管的是,光电子在电场作用下向阳极运动时与管中气体原子碰撞而发生电离现象。由电离产生的电子和光电子一起都被阳极接收,正离子却反向运动被阴极接收。因此在阳极电路内形成数倍于真空光电管的光电流。充气光电管的电极结构也不同于真空光电管。(2)原理当入射光线穿过光窗照到光阴极上时,由于外光 电效应( 光电式传感器),光电子就从极层内发射至真空。在电场的作用下,光电子在极间作加速运动,最后被高电位的阳极接收在阳极电路内就可测出光电流,其大小取决于光照强度和光阴极的灵敏度等因素。(3)性能与参数光电管的伏安

    3、特性在一定的光照射下,对光电器件的阴极所加电压与阳极所产生的电流 之间的关系称为光电管的伏安特性。光电管的光照特性当光电管的阴极和阳极之间所加的电压一定时,光通量与光电流之间的关系。光电管的光谱特性一般光电阴极材料不同的光电管有不同的红限频率,因此它们可用于不同的光谱范围。另外,同一光电管对于不同频率的光的灵敏度不同。(4)发展现状及应用根据光电阴极发射材料不同,可以分为银氧铯阴极,单碱锑化物光电阴极,多碱锑化物光电阴极,紫外光电阴极等,其中紫外光电管在工业燃油燃气,火灾监测等方面具有极其重要的作用。美国的霍尼韦尔公司(HONEYWELL)生产的紫外光电管如129464M,113228等型号产

    4、品被广泛应用于各种火灾探测器中。美国麻省理工学院最近研发了一种新型透明光电管,可以作为太阳能电池板放置在双层玻璃中,而且不影响光线通透。目前需要解决的最大问题就是光电管的寿命问题。假以时日,正如研究人员兰特表示:“虽不能为整座大楼供电,但这些电池板的发电量也相当可观,足以保证大楼的照明设备和日常电器的使用。光电倍增效应主要包括光电倍增管和像增强管。2.1.2光电倍增管光电倍增管(PMT)是一种建立在光电子发射效应、二次电子发射和电子光学理论基础上的,把微弱入射光转换成光电子并获倍增的重要的真空光电发射器件。光电倍增管由光电阴极,电子光学输入系统(光电阴极到第一倍增极D1之间的系统)、二次发射倍

    5、增系统及阳极等构成。在高速初电子的激发下,第一倍增极被激发出若干二次电子,这些电子在电场作用下,又打到第二倍增极处,又引起更多的二次电子发射,此过程一直继续到D10。最后,经倍增的光电子被阳极a收集而输出光电流,在负载RL上产生信号电压。 阴极光照灵敏度光电阴极的光电流IK除以入射光通量所得的商。 阳极光照灵敏度阳极输出电流IA除以入射光通量所得的商。 电流增益电流增益定义为在一定的入射光通量和阳极电压下,阳极电流与阴极电流的比值,也可以用阳极光照灵敏度与阴极光照灵敏度的比值来确定。 暗电流当光电倍增管在完全黑暗的情况下工作时,阳极电路里仍然会出现输出电流。(4)光电倍增管较光电管光的优势电倍

    6、增管是进一步提高光电管灵敏度的光电转换器件。管内除光电阴极和阳极外,两极间还放置多个瓦形倍增电极。使用时相邻两倍增电极间均加有电压用来加速电子。光电阴极受光照后释放出光电子,在电场作用下射向第一倍增电极,引起电子的二次发射,激发出更多的电子,然后在电场作用下飞向下一个倍增电极,又激发出更多的电子。如此电子数不断倍增,阳极最后收集到的电子可增加 104108倍,这使光电倍增管的灵敏度比普通光电管要高得多,可用来检测微弱光信号。光电倍增管高灵敏度和低噪声的特点使它在光测量方面获得广泛应用。(5)发展现状及应用光电倍增管可分成4个主要部分,分别是:光电阴极、电子光学输入系统、电子倍增系统、阳极。由于

    7、光电倍增管增益高和响应时间短,又由于它的输出电流和入射光子数成正比,所以它被广泛使用在天体光度测量和天体分光光度测量中。其优点是:测量精度高,可以测量比较暗弱的天体,还可以测量天体光度的快速变化。天文测光中,应用较多的是锑铯光阴极的倍增管,如RCA1P21。这种光电倍增管的极大量子效率在4200埃附近,为20左右。还有一种双硷光阴极的光电倍增管,如GDB-53。它的信噪比的数值较RCA1P21大一个数量级,暗流很低。为了观测近红外区,常用多硷光阴极和砷化镓阴极的光电倍增管,后者量子效率最大可达50。2.1.3像增强管像增强管是将微弱的可见光图像增强,使之成为明亮的可见图像的真空电子器件。(1)

    8、原理与结构当外来辐射图像成像于光电阴极时,光电阴极发射电子,电子经加速或经电子透镜聚焦并加速后,轰击荧光屏使之产生较亮的可见图像。(2)像增强管的发明和应用领域1934年,G.霍尔斯特等人制出第一只红外变像管。工作时,在平面阴极与平面荧光屏之间加高电压,阴极与荧光屏距离很近。这是一种近贴聚焦系统。此后又出现静电聚焦和电磁聚焦的成像系统。 单级像增强管的亮度增益通常在 50到100倍之间。采用纤维光学面板作为输入和输出窗口,可以把像增强管级联起来。三级级联的像增强管可获得104到105倍的亮度增益。级联像增强管配上物镜、目镜和电源后即成为夜间观察仪器,可用于军事、天文、医学、特殊照相、动物夜间习

    9、性观察、夜间监视等。这种可级联的像增强管称为第一代微光管,体积较大,且防强光能力差。在静电聚焦或近贴聚焦系统中加入一块微通道板,使单管达到104倍的亮度增益,就成为第二代像增强管(图1, 图2)。微通道板实际上是一个次级发射电流放大器。它是由几十万至几百万根空心玻璃丝组成的阵列,每根空心玻璃丝都具有一定的电导率和大于 1的次级发射系数。微通道板两端面涂有电极,可加6001000伏的电压。光电子进入微通道板后,通过倍增作用,使电流放大10003000倍。其输出电子经加速后轰击荧光屏,显示出可见光图像。在平面阴极和平面荧光屏之间加微通道板的双近贴式微光管没有倒像作用。通常采用 180扭转的纤维光学

    10、面板,把由物镜形成的倒立像再颠倒过来,从而得到正立的图像。这类微光管一般采用厚多碱光电阴极,以提高红光和近红外区域的灵敏度。采用灵敏度更高的-族负电子亲和势光电阴极,即为第三代像增强管。人眼只能感受范围很窄的电磁辐射(即可见光)。一些物质可将紫外线、X射线、射线等转换成可见光,可称为转换物质。应用变像管原理,在阴极基底上制作转换物质层和光电阴极,就能制成对某种射线敏感的变像管。例如转换材料是X射线荧光屏或CsI(Na)层,可制成X射线增强管。如果转换材料是闪烁晶体,可制成射线变像管。这种方法还可以推广应用于 射线、射线和中子辐射。例如利用中子源和中子变像管可以检查大型金属铸件中的缺陷。(3)发

    11、展现状及应用美国电子物理学公司生产出一种名为AstroScope(天文仪)9350的组合式夜视系统,其中包含最先进的第三代像增强管,能够把亮度级低于10-41x的景象变换成明亮的高分辨率图像一种定制的中继光具能够产生清晰的边到边图像细节而不会有晕光。英国光学公司展出过一种名为GT-14的超紧凑型战术多用途夜视单目镜。该夜视镜采用了美国或欧洲的高质量像增强管可满足全球范围内执法机构和军队用户的最高需求。2.2内光电效应基于光电导、光伏特和光电磁效应,在吸收了大于红外波长的光子能量以后,材料中出现光生自由电子和空穴的现象称为内光电效应。内光电效应主要包括光电导效应,光生伏特效应和光磁电效应。2.2

    12、.1光电导效应光敏电阻光子作用于光电导材料,形成本征吸收或杂质吸收,产生附加的光生载流子,从而使半导体的电导率发生变化,这就是光电导效应。利用光电导效应制作的光探测器称为光电导探测器,简称PC(Photoconductive)探测器,通常又称为光敏电阻。光敏电阻由半导体材料制成的,阻值随入射光线(可见光)的强弱变化而变化。通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子空穴对,参与导电,使电路中电流增强。为了获得高的灵敏度,光敏电阻的电极常采用梳状图案,它是在一定的掩膜下向光电导薄膜上蒸镀金或铟等金属形成的。(2)性能与参数光电流、亮电阻

    13、光敏电阻器在一定的外加电压下,当有光照射时,流过的电流称为光电流,外加电压与光电流之比称为亮电阻。暗电流、暗电阻光敏电阻在一定的外加电压下,当没有光照射的时候,流过的电流称为暗电流。外加电压与暗电流之比称为暗电阻。灵敏度灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受光照射时的电阻值(亮电阻)的相对变化值。光谱响应光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单色光照射下的灵敏度。光照特性光照特性指光敏电阻输出的电信号随光照度而变化的特性。伏安特性曲线伏安特性曲线用来描述光敏电阻的外加电压与光电流的关系。温度系数光敏电阻的光电效应受温度影响较大,部分光敏电阻在低温下的光电灵敏较高,而在高

    14、温下的灵敏度则较低。额定功率额定功率是指光敏电阻用于某种线路中所允许消耗的功率,当温度升高时,其消耗的功率就降低。光敏电阻属半导体光敏器件,除具灵敏度高,反应速度快,光谱特性及r值一致性好等特点外,在高温,多湿的恶劣环境下,还能保持高度的稳定性和可靠性,可广泛应用于照相机,太阳能庭院灯,草坪灯,验钞机,石英钟,音乐杯,礼品盒,迷你小夜灯,光声控开关,路灯自动开关以及各种光控玩具,光控灯饰,灯具等光自动开关控制领域。智能光敏电阻检测装置,硬件设计方面,根据光敏电阻分档过程中数据采集和处理的特点,用单片机AT89C52控制12位高速AD转换器AD574完成八路被检光敏电阻亮电阻、暗电阻等参数的数据

    15、采集。通过采用PDIUSBD12芯片的USB数据传输模块将采样数据送到上位计算机,经过上位机的分析处理得到被检光敏电阻对应的分档结果,并通过分检显示电路显示出来。 软件设计方面,数据采集模块和USB数据传输模块的单片机程序均用C语言设计,USB接口单片机程序中采用了PHILIPS的USB51S函数库来解释USB数据传输协议。使用Windows DDK开发了驱动程序。上位机应用程序利用PHILIPS公司提供的EasyD12库和Visual Basic 2005来设计,实现了对数据采集和分检显示电路的准确控制和检测结果的分析及保存。光生伏特效应光生伏特效应是指光照使不均匀半导体或均匀半导体中光生电

    16、子和空穴在空间分开而产生电位差的现象。主要产品包括光电池、光电二极管、光电三极管、光子牵引探测器等。2.2.2光电池光电池工作在零偏压状态。由于光电池常常用于把太阳光能直接变成电能,因此又称为太阳能电池。光电池的种类很多,如硒光电池、氧化亚铜光电池、硫化锡光电池、锗光电池、砷化镓光电池、硅光电池等等。目前,应用最广,最受重视的是硅光电池。由于使用此料不同,各种光电池结构也不相同。以硅光电池为例:由单晶硅组成,在一块n型硅片上扩散p型杂质(如硼),形成扩散p+n结。p+n型多在地面上作光电探测器应用;在p型硅片扩散n型杂质(如磷),形成n+p结,再焊上两个电极。p端为光电池正圾,n端为负极。n+

    17、p型硅光电池具有较强的抗辐射能力,适合空间应用,作为航天器的太阳能电池。(2)特性参数光照特性 光电池的光照特性主要有伏安特性、入射光强电流电压特性以及入射光功率负载特性。光谱特性温度特性光电池的温度特性曲线是描述Voc及Isc随温度变化情况。频率特性太阳光电池等效电路(3)光电池的发展历史1839年,安托石-贝克雷尔制造出了最早的光电池。贝克雷尔电池是一个圆柱体,内装硝酸铅溶液,溶液中进入一个铅阳极和一个氧化铜阴极。这种电池一经阳光照射,就会供给电流。1875年,德国技师维尔纳-西门子是制成第一个硒光电池,并提议用于光量测定。西门子的光电池是根据1873年英国人史密斯发现的“内光电效应”提出

    18、的。L.H.亚当斯于1876年指出,硒在光的作用下,不仅出现电阻的变化,而且在一定条件下还出现电动势,从而发现了“阻挡层效应”。阻挡层效应则成了光电池的基本原理。光电池被广泛地用于自动控制技术、信息电子学和测量技术。这些元件的性能约自1950年起,因半导体技术的发展而得到显著改善。除了常用的单晶、多晶、非晶硅电池之外,多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种: a) 硫化镉太阳能电池b) 砷化镓太阳能电池c) 铜铟硒太阳能电池(新型多元带隙梯度Cu(In, Ga)Se2薄膜太阳能电池)近几年来,世界各国政府及学术机

    19、构投入大量的人力、财力研究聚合物光电池,,每年都有大量的论文和专利发表。国外主要的研究与生产机构包括美国加州大学圣巴巴拉(UCSB),美国伯克立先进材料国家重点实验室,德国Oldenburg大学,德国的西门子公司,日本日立等。国内中院科化学研究所、华南理工大学等在聚合物材料的合成及器件的制备都取得了可喜的成绩。有机光伏电池的研究成果是喜人的,获得了较高的能量转换效率,但总体性能仍然无法与无机硅太阳能电池相比。如何克服聚合物低的迁移率,调控给体与受体相之间的界面、尺寸、相分离及各自相内的结构等都是需要解决的问题。如果能在保证聚合物材料具有适当的电导率,具有与太阳辐射更匹配的光谱响应。同时,对高分

    20、子太阳电池的成膜技术,器件制作工艺和结构设计进行改进,那么,利用导电高分子材料的低成本和优良的特性制作实用的高分子太阳电池前景广阔。2.2.3光电二极管光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。包括Si、Ge结型光电二极管、PIN光电二极管、雪崩光电二极管、异质结光电二极管、肖特基势垒光电二极管等。普通二极管在反向电压作用时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。光电二极管是在反向电压作用下工作

    21、的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,反向电流也越大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号。(2)特性参数(以硅光电二极管为例)伏安特性 响应率 硅光电二极管的电流响应率通常在0.40.5AW量级噪声 硅光电二极管的噪声主要来自散粒噪声与热噪声PN型特性:优点是暗电流小,一般情况下,响应速度较低。用途:照度计、彩色传感器、光电三极管、线性图像传感器、分光光度计、照相机曝光计。PIN型缺点是暗电流大,因结容量低,故可获得快速响应。高速光的检测、光通信、光纤、遥控、光电三极管、写字笔、传真。发射键型使用A

    22、u薄膜与N型半导体结代替P型半导体。主要用于紫外线等短波光的检测。雪崩型相应速度非常快,因具有倍速做用,故可检测微弱光。高速光通信、高速光检测。2.2.4光电三极管采用一般晶体管放大原理,可得到一种具有电流内增益的光伏探测器,即光电三极管。(1) 结构与原理光电三极管的工作有两个过程,一是光电转换;二是光电流放大。等效于一个光电二极管与一般晶体管基极集电极结的并联。集电结起双重作用,一是把光信号变成电信号起光电二极管的作用;二是将光电流放大,起一般晶体三极管的集电极的作用。伏安特性:有光照时,光电三极管输出电流比同样光照下光电二极管的输出电流大倍;频率响应光谱特性:取决于所用的半导体材料及制作

    23、工艺。温度特性:发射极集电极的反向电流和电流放大倍数随工作温度变化而最敏感目前的光电三极管是采用硅材料制作而成的。这是由于硅元件较锗元件有小得多的暗电流和较小的温度系数。硅光电三极管是用N型硅单晶做成NPN结构的。管芯基区面积做得较大,发射区面积却做得较小,入射光线主要被基区吸收。与光电二极管一样,入射光在基区中激发出电子与空穴。在基区漂移场的作用下,电子被拉向集电区,而空穴被积聚在靠近发射区的一边。由于空穴的积累而引起发射区势垒的降低,其结果相当于在发射区两端加上一个正向电压,从而引起了倍率为+1(相当于三极管共发射极电路中的电流增益)的电子注入,这就是硅光电三极管的工作原理。2.2.5光磁

    24、电效应光电磁探测器置于强磁场中的半导体表面受到光辐射照射时产生光生电子-空穴对。表面的电子与空穴浓度增大,向半导体内部扩散,在扩散过程中,因强磁场作用,使电子和空穴发生不同方向的偏转,它们的积累在半导体内部产生一个电场,阻碍电子和空穴的继续偏转。若此时把半导体两端短路,则产生短路电流,开路时,则有开路电压。这种现象即为光磁电效应。(1)原理其机制是:光照射到半导体表面后生成非平衡载流子的浓度梯度,使载流子产生定向扩散速度,磁场作用在载流子上的洛仑兹力使正负载流子分离,形成端面电荷累积的电位差和横向电场。当作用在载流子上的洛仑兹力与横向电场的电场力平衡时,两端面的电位差保持不变。 在垂直光照方向

    25、上(z向)再加一磁场,则在半导体的两侧端面间产生电位差,称为光磁电效应。对N型半导体:Vy=(l/d)(B(z)(n)+(p)/(n(0)(n)D(p)(p)。短路电流:Is=-B(z)D(p)(n)+(p)b(p)。(2)发展现状及应用:太阳光电磁像仪 photoelectric solar magnetograph 用光电辐射探测器测量太阳磁场的一种基本仪器,也称向量磁像仪,是美国天文学家H.D.巴布科克于1953年发明的。光电磁像仪一般是由太阳摄谱仪改制的。在图1中,入射狭缝前有一组偏振光分析器,由波片、电光晶体、偏振片组成。电光晶体通光的两个表面上镀有透明电极,加上交变的高压电信号,便

    26、成为调制波片,其光学滞后量通常是在1/4波长范围内变化。这样,偏振光分析器便能对不同的偏振成分进行调制分析。在摄谱仪焦面处有三个紧靠在一起的出射狭缝,正中狭缝对准谱线轮廓中央,用于横向磁场测量。两旁狭缝处于谱线轮廓翼部对称位置,用于纵向磁场测量。出射光进入相应的光电倍增管,输出电流经过放大,再由电子装置和计算机处理成磁场信号。在单独进行纵向磁场测量时,偏振光分析器可以仅由电光晶体和偏振片构成。2.3热探测器热探测器是用探测元件吸收入射辐射而产生热、造成温升,并借助各种物理效应把温升转换成电量的原理而制成的器件。最常用的有温差电偶、测辐射热计、高莱管、热电探测器。一般来说,热探测器的接收元由于表

    27、面涂黑它的光谱响应是无选择性的,它只受透光窗口光谱透射特性的限制,因此主要应用于红外区和紫外区,但它的响应率较低、响应速度慢、机械强度低,近来由于热电探测器和薄膜器件的发展,上述缺点已有所改进。2.3.1热释电效应热释电探测器当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷。这种由于热变化而产生的电极化现象称为热释电效应。在某些绝缘物质中,由于温度的变化引起极化状态改变的现象称为热释电效应。通常,晶体自发极化所产生的束缚电荷被空气中附集在晶体外表面的自由电子所中和,其自发极化电矩不能显示出来。当温度变化时,晶体结构中的正、负电荷重心产生相对位移,晶体自发极化值就会发生变化,在晶体表

    28、面就会产生电荷耗尽。能产生热释电效应的晶体称为热释电体,又称为热电元件。热电元件常用的材料有单晶(LiTaO3等)、压电陶瓷(PZT等)及高分子薄膜(PVF2等)。如果在热电元件两端并联上电阻,当元件受热时,则电阻上就有电流流过,在电阻两端也能得到电压信号。(2)发展现状及应用热释电效应在近10年被用于热释电红外探测器中,广泛地用于辐射和非接触式温度测量、红外光谱测量、激光参数测量、工业自动控制、空间技术、红外摄像中。我国利用ATGSAS晶体制成的红外摄像管已开始出口国外。其温度响应率达到45A/,温度分辨率小于0.2,信号灵敏度高,图像清晰度和抗强光干扰能力也明显地提高,且滞后较小。此外,由于生物体中也存在热释电现象,故可预期热释电效应将在生物,乃至生命过程中有重要的应用。2.3.2温差电效应热电偶、热电堆由两种不同材料制成的结点由于受到某种因素作用而出现了温差,就有可能在两结点间产生电动势,回


    注意事项

    本文(光电探测器的发展现状及分析Word文档下载推荐.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开