欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    恒压供水毕业设计论文优秀给排水毕业设计完整版Word文档下载推荐.docx

    • 资源ID:5677061       资源大小:622.27KB        全文页数:53页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    恒压供水毕业设计论文优秀给排水毕业设计完整版Word文档下载推荐.docx

    1、(1)供水成本高。由于校园内的用水全部单纯采用水泵供水,造成电能的极大浪费和机电设备的大量损耗。(2)供水可靠性低。由于水泵采用人工操作方式,高位水池的水位只能靠人为估计,而且高位水池离水泵房较远,无法做到准时开机和停机。会造成供水中断或出现高位水池水位过高而溢流,电能和水资源造成浪费。另外,如果蓄水池水位过低,还会造成水泵空转,导致电能浪费和机电设备的加速损耗。(3)水资源浪费。除水泵不能准时停机而造成的溢流浪费外。学生因高峰期供水中断,故经常打开阀门未关,造成来水后的浪费。很多学生在上课前或睡觉前打开阀门,用水桶或脸盆接水、贮水,造成来水后大量溢流,极大地浪费了水资源,增大了供水成本。(4

    2、)校园管网系统设计有缺陷。对于一般建筑物,如教室、实验室、教师住宿区等,本来城市自来水的正常供水即可满足其用水量要求,但采用水泵供水后反而会出现楼房顶层供水不足的现象。同时,用水量大的学生宿舍屋顶水池设计偏小,调节能力较差。1.2国内恒压供水系统的现状1.2.1国内恒压供水系统研究状况目前,就国内而言,归结起来主要采用以下三种方法:(1)水池水泵(恒压变频或气压罐)管网系统用水点 这种方式是集中供水。对于一、二层是商业群房,群房上建有多幢住宅的建筑,目前较多采用此种供水方案。一般设计有地下生活水池一座,集中恒压变频供水,不设屋顶水箱。主水泵一般有三台,二开一备自动切换,副泵为一般为一小流量泵,

    3、夜间用水量小时主泵自动切换到副泵,以维持系统压力基本不变。恒压变频供水是较为理想和先进的。首先恒压变频供水保证出水压力不变,根据用水量大小进行变频供水,既节约电能,又保证水泵软启动(对电网电压冲击不大),延长了水泵寿命。各台水泵自动轮换使用,即最先投入使用的水泵最早退出运行,这样各台水泵寿命均等,而且一旦水泵出现故障,该系统能自动跳过故障泵运行。如图1-1所示。(2)水池水泵高位水箱用水点 此方式也是集中供水。单幢次高层和高层建筑的高压供水区较多采用该种方案。一般也需要设计有一座地下水池,通过两台水泵(一用一备)抽水送至高位水箱,再由高位水箱向下供水至各用水点。该方式是较成熟的水泵、水箱供水方

    4、式。(3)单元水箱单元增压泵单元高位水箱各单位用水点 此方式已简化为单元总水表进水。单元水箱和单元增压泵实际上是一个整体,我们称之为单元增压器。由于有屋顶水箱,高水位时停泵,低水位时启泵,这样,水泵也有了停息时间,既省电又不至于一停电就停泵无水供应,用水有了保障,社会效益较好。图1-1传统恒压供水方式1.2.2各类供水系统的比较水池水泵(恒压变频或气压罐)管网系统用水点是目前国内外普遍采用的方法。该系统供水采用变频泵循环方式,以“先开先关”的顺序关泵,工作泵与备用泵不固定死。1这样,既保证供水系统有备用泵,又保证系统泵有相同的运行时间,有效地防止因为备用泵长期不用发生锈死现象,提高了设备的综合

    5、利用率,降低了维护费用。水池水泵高位水箱用水点这种供水方式通过水泵抽水送至高位水箱,再由高位水箱向下供水至各用户。但是这第种二次供水方式不可避免造成二次污染,影响居民的身体健康。所以这种方案并不可取,终将淘汰。单元水箱单元增压泵单元高位水箱各单位用水点的确也达到了楼房高层的用户不因城市供水管网水压减小而用不到水的目标,2但是它的投资较大,总费用比上两种方式增加一、二十万元。这些费用要在用户的水电费上来扣除,这对于居民和学校来说是巨大的压力,所以也不可取。结合校园用水的特点和经济效益的考虑,决定采用恒压变频供水系统。但上述的恒压供水系统有一个很大的弊病,就是在一个变频泵已经工作但压力仍然达不到设

    6、定压力,需要启动另外一个泵时把主线路从变频器切换到工频线路上,从理论上讲是不错的,变频器输出电压是380V,工频线路输出的也是380V。但是实际应用中工频线路的电压是不定的。3一般在水厂的配电室里对外输出有两到三个档,一个是春秋季节时用的380V的供电电压,另一个是夏天时用的420V或420V以上(因为用空调冰箱较多),设所需水压0.2mpa,单泵只能达到0.195mpa,则需要加泵,当线路由变频切换到工频时,电压突然增大,多出来的电压会使水泵向上抽更多的水,很有可能使水压超过设定值,PLC根据压力传感器的信号令A泵退出运行,但实际水压并未达到0.2mpa稳定后仍然需要加泵,B泵频率上升至50

    7、Hz,切换线路并启动C泵,切换时又遇到刚才的状况,导致水泵频繁切换,但水压始终上不去。1.3 本课题的总体方案1.3.1系统的总体布局图图1-2 系统总体布局图1.3.2系统的总体方案系统采用3台水泵并联运行方式,把1泵和变频器连接,实现变频运行。为保护电机,2泵和3泵用软起动器来启动,起动参数可调,而且采用软起动具有软停车功能,即平滑减速,逐渐停机,它可以克服瞬间断电停机冲击电流大的弊病,减轻对管道的冲击,避免高程供水系统的“水锤效应”,减少设备损坏。在工作过程中,压力传感器将主管网水压变换为电流信号,经模拟量输入模块,输入PLC,PLC根据给定的压力设定值与实际检测值进行PID运算,输出控

    8、制信号经模拟量输出模块至变频器,调节水泵电机的频率。当用水量较小时,一台泵在变频器的控制下恒压运行,当用水量大到水泵全速运行也不能保证管网的压力达到设定值时,压力传感器上传的信号被PLC检测到,PLC自动将变频泵的频率降至出水频率,同时将第二台泵软启动投入到工频运行,以保持压力的稳定,此时管网压力恒定依靠调节变频泵频率实现;一段时间后,若2台泵运转仍不能满足压力的要求,则依次将软启动下一台水泵。当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时实际压力值大于设定压力,PLC将最后启动的工频泵停掉,以减少供水量。4一段缓冲时间后,当变频器仍工作在出水频率以下时,PLC再软停车停掉第2台

    9、工频运行的电机,此时管网压力恒定依靠调节变频泵频率实现。为了防止备用泵锈死,用PLC定时,B、C泵循环备用。循环时间可默认定在每周三凌晨2点,因为这时用水量较少,备用泵循环可顺利进行。主要参数的设定可用文本显示器来设定。5省去了改写程序的麻烦。1.3.3本系统的特点提高备用泵的利用率,是本系统的第一个目的,也是第一个特点。节能,是设计这套系统的另一个重要目的。第一,普通二级加压水厂只单纯手动控制电机的启动和切换,这样在电机启动时会产生很大的启动电流,长此以往对电机寿命有很大损害,而且在供水时一直按工频全速运转效率低、能耗大。而本系统可根据实际压力变化自动调整变频器频率,从而改变电机转速,减少了

    10、能量的消耗。第二,普通恒压供水在用水量变化较大时有高效、节能的作用,但在用水量很小的情况下,如晚上,变频器工作在出水频率附近,耗电量增大。下面引用我的校外导师的一篇文章来说明。在山东农村,每村平均户数在260户左右,每户每月用水量大约在3t,每月全村用水量约780t,平均每天用水约26t。经过统计,每天早、中、晚各1h用水量之和占全天用水量的80左右,即3h供水量为21t,平均7t/h。而其他21h供水总量为5.4t,平均0.26t/h。如该村选用的潜水电泵是2OOQj3252/4,额定流量32m/h,额定功率7.5KW,则在除早、中、晚三时的时间里,其流量占额定流量的0.81,不足1,而在早

    11、中晚三时,流量占额定流量的21。根据试验,当2OOQj3252/4潜水电泵与变频设备合理匹配的情况下,当流量达到额定流量21,其能耗为3.1KW。由上面的分析可知,早中晚三时供水总量为80,而耗电量为9.3kWh;而其他21个小时,供水总量为20,而耗电量为34.65kWh。6早、中、晚三时供水量80,只占全天耗电的21,而其余时间供水量20,耗电却占全天的79。这显然是极不合理的现象。因此,必须解决好微小流量时能耗大效率低的问题。当流量较小时,恒压供水模式将转换成压差供水模式。压差供水模式的工作过程如下,当流量条件满足压差方式时,系统自动切换。变频泵以50Hz的频率开启,向微泄露补偿器压水,

    12、当压力达到压差上限时,水泵停止供水并停机。这时管道的压力由微泄露补偿器来提供。当压力传感器检测到压力低于压差下限时,变频泵再次以工频把补偿器压满。在压力达到压差上限时,定时器同时计时,在变频器若干次的启停后(系统默认为4次),PLC自动比较压力由压差上限到压差下限的的时间是否低于系统设定的频率上升时间,若都低于说明需水量已增大,系统就自动切换到恒压供水状态。微泄露补偿器是比传统的压力罐、气压罐更先进、更环保的恒压装置。只使用普通气囊储气,而微泄露补偿器使用高质量橡胶囊储气,杜绝了二次污染。本系统是由变频技术、压差恒压自动转换技术及微泄露补偿技术组成。采用这种技术供水时,变频设备能自动的根据供水

    13、流量转换供水方式,并利用微泄漏补偿器储能,来实现微小流量下高效率供水的目标。1.4本课题的主要工作本文所做的工作分为两个方面,一是电气图的设计;二是PLC程序的编制满足工艺要求。全文主体思路共分为5章,第一章概述恒压供水问题的提出和意义,国内恒压供水系统的现状,明确论文要解决的问题并提出总体方案;第二章概述恒压供水方案解决的基础上,介绍恒压供水系统的主要器件的原理和使用方法。第三章详细介绍全自动供水系统的硬件设计。第四章详细阐述供水系统的软件设计。第五章是结论,总结该系统的设计思路及优点。第二章 恒压供水系统的原理2.1变频器2.1.1变频器的基本原理变频器是利用电力半导体器件的通断作用将工频

    14、电源变换为另一频率的电能控制装置。我们公司现在使用的变频器主要采用交直交方式(VVVF变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流环节、中间直流环节、逆变环节和控制环节4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。从理论上可知电机的转速N与供电频率f有以下关系: ( q-电机极数 s-转差率) (2-1) 由上式可知,转速n与频率f成正比,如果不改变电动机的级数,只要改变频率f即可改变电动机的转速,当频率f

    15、在050Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。变频器在工频以下和工频以上工作时的情况:(1)变频器小于50Hz时,由于I*R很小,所以U/F=E/F不变时,磁通为常数,转矩和电流成正比,这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力,并成为恒转矩调速。(2)变频器50Hz以上时,通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速。 (T=Te, P60Hz时,X会相应减小。对于电机来说, (K-常数,I-电流,X-磁通) (

    16、2-4)因此转矩T会跟着磁通X减小而减小。结论:当变频器输出频率从50Hz以上增加时,电机的输出转矩会减小。2.1.2变频器结构电路图主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。变频器结构图如图2-1所示。 图2-1变频器结构图2.1.3变频器的配线1、主回路端子台的配线图如图2-2所示。图2-2 变频器配线图2、控制回路端子(1)控制回路端子图变频器实际应用中接线端子排列如图2-3所示。图2-3 变频器端子图(2)控制回路端子功能说明变频器中所用的各个端子说明如表2-1所示。JP1跳线说明:电源:1-2短接,8V+输出5V/50mA。2-3短接,V+输

    17、出10V/10mA。表2-1 变频器端子功能表种类端子符号端子功能备 注模拟输入V+向外提供+5V/50mA电源或+10V/10mA电源由控制板上JP1选择V-向外提供-10V/10mA电源VI1频率设定电压信号输入端1010VVI2频率设定电压信号输入端2-1010VII频率设定电流信号输入正端(电流流入端)020mAGND频率设定电压信号的公共端(V+、V-电源地),频率设定电流信号输入负端(电流流出端)控制端子X1多功能输入端子1多功能输入端子的具体功能由参数L-63 L-69设定,端子与CM端闭合有效X2多功能输入端子2X3多功能输入端子3X4多功能输入端子4X5多功能输入端子5X6多

    18、功能输入端子6X7多功能输入端子7,也可作外部脉冲信号的输入端子 FWD正转控制命令端与CM端闭合有效,FWD-CM决定面板控制方式时的运转方向。REV逆转控制命令端RST故障复位输入端CM控制端子的公共端+24向外提供的+24V/50mA的电源 (CM端子为该电源地)模拟输出AM可编程电压信号输出端,外接电压表头(由参数b-10设定)最大允许电流1mA输出电压010VFM可编程频率信号输出端,外接频率计(由参数b-11设定)最高输出信号频率50KHz、幅值10VAM-AM、FM端子的公共端内部与GND端相连OC OC1OC2可编程开路集电极输出,由参数b-15及b-16设定最大负载电流50m

    19、A,最高承受电压24V故障出TATBTC变频器正常:TA-TB闭合TA-TC断开变频器故障:TA-TB断开TA-TC闭合触点容量:AC250V 1A阻性负载RS485通讯ABRS485通讯端子3、变频器的基本配线图如图2-4所示。图2-4 变频器基本配线图2.1.4 故障诊断与对策当变频器有故障时,1泵故障输入置1,1泵停止,具体故障如表2-2。表2-2 变频器故障对策表故障代码故障说明可能原因对 策Er.01加速中过流1. 加速时间过短2. 转矩提升过高或V/F曲线不合适1. 延长加速时间2. 降低转矩提升电压、调整V/F曲线Er.02减速中过流减速时间太短增加减速时间Er.03运行中过流负

    20、载发生突变减小负载波动Er.04加速中过压1. 输入电压太高2. 电源频繁开、关1. 检查电源电压2. 用变频器的控制端子控制变频器的起、停Er.05减速中过压1. 减速时间太短2. 输入电压异常1. 延长减速时间2. 检查电源电压3. 安装或重新选择制动电阻Er.06运行中过压1. 电源电压异常2. 有能量回馈性负载2. 安装或重新选择制动电阻Er.07停机时过压电源电压异常检查电源电压Er.08运行中欠压2. 电网中有大的负载起动2. 分开供电Er.09变频器过载1. 负载过大2. 加速时间过短3. 转矩提升过高或V/F曲线 不合适4.电网电压过低1. 减小负载或更换成较大容量变频器2. 延长加速时间3. 降低转矩提升电压、调整V/F曲线4. 检查电网电压Er.


    注意事项

    本文(恒压供水毕业设计论文优秀给排水毕业设计完整版Word文档下载推荐.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开