欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    天然气脱水理论知识.docx

    • 资源ID:5137776       资源大小:32.53KB        全文页数:23页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    天然气脱水理论知识.docx

    1、天然气脱水理论知识天然气脱水一、 概述天然气脱水工艺主要有吸附法、溶剂吸收法和低温法三类。本节只包括陆上终端为各种天然气凝液回收工艺配套的脱水方法。为一般输气采用的常规甘醇脱水另见XXXXXX。天然气凝液回收一般都要在低温下进行。随采用的回收工艺不同,脱水要求的深度也不同。常见方法如下:1吸附法 采用的吸附剂(干燥剂)有分子筛、硅胶和活性氧化铝。分子筛脱水是最常用的方法,适用于将水露点降到70100的场合。硅胶适用于露点4060。吸附是在充填干燥剂的容器中进行的,吸附完成后转为再生,再生还包括加热和冷却两步。为此至少由两台吸附器轮流操作。2芳烃气提法甘醇脱水 采用芳烃气提可将天然气露点降到40

    2、95,脱水到这样的的露点,需要三甘醇的浓度达到99.9999.999%。如气中含有较多芳烃,该法的投资和成本低于吸附法,还可回收粗芳烃,避免环境污染和提高经济效益。3低温脱水 天然气凝液回收一般都要在不同程度的低温下进行。预先脱水是为了防止在生产过程中产生水合物堵塞。如果向气流注入水合物抑制剂,在很多场合也可以取代预先脱水。如果冷冻温度不低于35,可采用甘醇作为抑制剂。更低温度可采用甲醇,也能代替其它方法用于深冷分离。如果天然气含硫化氢及二氧化碳,也可用甲醇作溶剂来脱除。 二、 吸附法脱水1常用干燥剂品种及特性常用的天然气干燥剂(吸附剂)主要有分子筛、硅胶和活性氧化铝三种。1)分子筛分子筛以其

    3、晶间结构的近似尺寸划分类型。4A级为4.24.7埃,对H2S、CO2、醇类等极性化合物有很强的吸附性,常用于气体脱水。有的3A级分子筛的晶间直径为3.23.3埃,只吸附水和更小的分子。分子筛对不同直径的分子有很强的筛选能力,但不能认为能绝对准确。这是因为孔穴直径不可能都很准确、表面也会附着大直径的分子,而且分子并不是圆形的。2) 硅胶硅胶有很强的吸水能力。但对水的脱除比分子筛差。硅胶接触到游离水会很快破碎。直径4mm或更大的玻璃球状的硅胶不适用于天然气脱水。进入硅胶吸附床的气体不能含有游离水。经常在吸附床入口处加一层特殊的不受水滴影响的阻水级硅胶。硅胶的晶间孔隙直径大于20埃,还能吸附天然气中

    4、天然汽油。颗粒状硅胶用于含有重质烃的气体时很少发生结焦。3) 活性氧化铝活性氧化铝有几种不同的类型,纯度和能力不同,形状也不同。晶间孔隙很大,对水有亲合性,也吸附醇、甘醇和重质烃。其吸水能力与硅胶相近。活性氧化铝是商业吸附剂中最硬的一种,它们常用于吸附剂易受到物理性破坏的场合。液体水或凝析液的段塞流能够导致硅胶和分子筛的破损,但不能损坏氧化铝。2干燥剂的选择干燥剂的选择主要考虑工艺需要和降低成本。主要成本包括购买和更换干燥剂的费用和燃料的费用。表12-2-3-1为用于气体干燥的吸附剂的成本和适用场合。表12-2-3-1 干燥剂特点比较吸附剂类型 脱水程度 最低露点 相对成本 燃料消耗,m3/k

    5、g干燥剂 特点活性氧化铝 8090 65 最低 0044 强度最高,不怕游离水。硅胶 8090 80 中等 0044 工艺气含有重质烃时不会焦化入口气有游离水,吸附剂会被严重损坏。分子筛 9599.9 100 最高 0062 吸水能力受温度和相对湿度影响比另两种小游离水、重质烃或杂质会降低吸附能力。注:表中数据供对比仅供概念性参考。如上表所示,分子筛能够处理温度最高的气体,并且比活性氧化铝和硅胶脱水深度深。分子筛的成本也最高,因此,它常在其它干燥剂不能满足工艺要求的情况下使用。当工艺要求的脱水深度小于90%时,可以选择活性氧化铝和硅胶。活性氧化铝比硅胶成本低。 压缩机出口气体含有的重质烃和润滑

    6、油会被吸附,并且在再生时会发生结焦。这将导致吸附剂失效,从而增加吸附剂的更换频率。颗粒状硅胶不象球状硅胶以及活性氧化铝那样容易结焦。另一个影响活性氧化铝和硅胶的选择的因素是水以液体状态进入塔时。硅胶与液态水接触时会引起爆裂。活性氧化铝不受游离水影响。在使用硅胶做干燥器时,须采用阻水层,但这比正常的材料成本高,不经济。应用硅胶做干燥剂时,阻水缓冲层高度占塔的10%-20%。3常用干燥剂物性主要物性见下表:表12-2-3-2 常用干燥剂主要物性品种 形状 容重,kg/m3 粒径,mm 比热容,kJ/(kg?K)分子筛 条形 640705 3或1.5 1.000分子筛 球形 670720 5=2 1

    7、.000硅胶 球形 720785 7-2 1.050活性氧化铝 球形 830 6-2 注:各生产厂有差别,表内数据仅供参考。4饱和吸水能力1) 天然气相对湿度的影响如果天然气含水不饱和,即相对湿度较低时,其吸水能力将下降。图12-2-3-1表示常用吸附剂在天然气相对湿度50以下时的吸附能力。吸水能力是指24时干燥剂吸水达到饱和时的吸水能力。可以看出分子筛受相对湿度的影响较小。如果天然气含水不饱和,即相对湿度较低时,其吸水能力将下降。其中分子筛受天然气湿度影响较小,硅胶或活性氧化铝影响很大。希望在吸附脱水前用甘醇等预先脱水的办法来减少吸附剂用量,是没有实际意义的。图12-2-3-2表示不同湿度下

    8、分子筛吸水能力校正系数。1,32) 温度对吸水能力的影响吸水能力会随温度上升而下降。吸附温度在25以上,按图12-2-3-3乘以校正系数。3) 残留水的影响2,4干燥剂床层中由残留水将减少实际吸附能力,必须从吸水能力中扣除。再生温度和再生气的露点将影响残留水的数量。图12-2-3-4表明分子筛再生后残留水含量与再生条件的关系。从图中可看出分子筛再生希望采用脱水后的天然气。露点90的再生气,230再生,残留水量不过0.1。生产实际中再生温度有的甚至可低于200。图12-2-3-5表明硅胶再生后残留水含量与再生条件的关系。从图中可看出硅胶再生可以用湿气再生,而且再生温度比分子筛低得多。如果不要求脱

    9、水后天然气露点很低,就没有必要选择分子筛。图12-2-3-6表明活性氧化铝再生后残留水含量与再生条件的关系。从图中可看出氧化铝也能采用湿气进行再生,但再生气的露点影响比硅胶大一些,需要再生温度略高于硅胶。4) 再生次数的影响4使用时间增加也会使吸附能力下降。图12-2-3-7为分子筛吸水能力随再生次数的变化曲线。图12-2-3-8为硅胶或活性氧化铝吸水能力(重量) 随再生次数的变化曲线。图中有三条曲线,中间一条代表正常情况下运行的吸水能力变化。上面与中间阴影区表示处理量小于设计值的75%;或吸附周期大于14小时。中间与下面阴影区是:?入口气体已经部分脱水、?入口气体含有甲醇;?吸附剂高度小于2

    10、400mm;?床层接收了盐水、甘醇或胺类液体段塞?入口气体温度大于38。上图数据只是一般参考値,但从中可得出以下结论: 如果吸附周期为8小时,每年再生1000次,一年内吸附能力会大幅度下降,以后接近平稳。 含水较少或相对湿度较低的气,可考虑延长吸附周期到1224 小时,使干燥剂寿命达到6年或更长。 杂质对吸水能力和分子筛寿命影响极大。主要影响和对策如下: 压缩机润滑油、甘醇、脱硫溶剂、缓蚀剂和机械杂质,造成吸附剂堵塞。游离水会损坏分子筛。为此必须在进吸附器前先做好过滤和分离。 油气采集过程注入甲醇或混入氧气(空气),在再生加热和分子筛的催化作用下产生水和二氧化碳,降低吸附能力。气中含600pp

    11、m的氧,在287下再生,气中有一半转化成水。230下再生,水可减到100ppm。再生温度降到180,运行4年美出问题。3) 酸气的影响5硫化氢和二氧化碳会导致天然气的饱和含水量增加(参看第二篇第三章)。在分子筛运行过程中会产生COS和水。分子筛对该反应有催化作用。COS是腐蚀性很强的物质。水会增加吸附床层的残留水量。最好是先用溶剂脱除酸气,如酸气含量不高,则需考虑采用抗酸分子筛。4)饱和吸水能力由于干燥剂随再生次数下降,设计饱和吸水能力可以取13,再乘以温度校正系数和相对湿度校正系数1。5. 流动状态下的吸水能力3前面提到的吸水能力是指达到饱和时的数值。天然气在吸附床内是流动的,不可能床层内的

    12、干燥剂全部达到饱和。吸水过程由床层进口到出口是逐渐向前推进的。气流由进入床层到离开床层中的不同位置处的含水会有很大差别。气流开始进入床层是有一个传质区(Mass Transfer Zone,简称MTZ)。传质区内的含水不可能达到饱和,参看图12-2-3-9(a)。随吸水过程继续进行,从进口起逐渐出现饱和区,参看图12-2-3-9(b)。饱和区的长度逐渐加长,到传质区的前锋达到床层出口除为止参看图12-2-3-9 (c)。此时如继续运行,出口气的含水将不合格。饱和区的长度只需按上述各种条件调整后的实际饱和吸水能力,扣除残留水量推算就可以了。应当注意到分子筛床层填充量是按两年后的吸水能力计算的,在

    13、运行初期的吸水能力要比后期高得多。如果吸附周期不变,在吸附停止时床层内还有一段较长的无水区。传质区的长度与气速等多种因素有关,另见下面的设计计算方法。无水区中会有少量残留水和其它被吸附的物质,具体与吸附剂的性能有关。如果采用4A分子筛,无水区内可有CO2、H2S和甲烷。如气中含有较多二氧化碳,则无水区内其它物质会因吸附力较低而被CO2置换掉。在这种情况下,吸附周期开始时干气中CO2含量极少,随后被吸附的CO2被水置换出来。干气中CO2含量会很快上升。如果下游有干冰问题,对CO2含量有严格要求时,应通过计算查明带来的影响。6. 吸附剂再生1吸附剂再生包括加热和冷却两步。图12-2-3-10 为典

    14、型的8小时再生过程温度变化曲线,再生气温度为260。T1为进气温度,T2为解吸开始温度(约120),T3为解吸基本完成的温度,T4为加热终止后气出口温度(约比再生气低30),T5为冷却终止温度。T5会比T1略高,在转为吸附后,床层温度会很快被来气冷却。在预热期间,主要是床层升温,烃类和二氧化碳会被解吸。被吸附的水主要是吸收潜热,很少有水分被解吸。解吸段的热主要是补偿吸附热,所以温升很小。床层升温阶段主要用于除掉残余水,此时温升较快。如果允许残留水略高一点,T4可以降低。但T2和T3不必改动。如果周期不是8小时,横坐标可以按比例拉长或缩短,不会对计算有明显影响。7吸附流程1) 两塔流程 典型流程

    15、吸附法脱水是吸附和再生轮流运行的。为此至少要有两套吸附器,即两塔式。当一个塔完成吸附后,立即切换到另一个塔。已完成吸附过程的塔需转为再生操作。再生操作包括加热和冷却两个过程。加热和冷却一般都是用干燥后的天然气实现的。采用干气再生主要是避免再生后的吸附剂残留水分,减少吸水能力。吸附法脱水是吸附和再生轮流运行的。为此至少要有两套吸附器,即两塔式。当一个塔完成吸附后,立即切换到另一个塔。已完成吸附过程的塔需转为再生操作。再生操作包括加热和冷却两个过程。加热和冷却一般都是用干燥后的天然气实现的。采用干气再生主要是避免再生后的吸附剂残留水分,减少吸水能力。图12-2-3-11是一种典型的两塔式天然气脱水

    16、流程。进口的湿气要先进到分离器,分掉游离的液体和杂质,以免降低吸附剂的吸水能力。分离器应紧靠吸附器安装,管线要短,避免重新出现凝液和杂质。图中三相分离是针对压缩机出口的富气考虑的。如果只有一种液相,可只设两相分离。如液量很少,应间歇排液,甚至人工排液。含有润滑油、重质溶剂或粉尘的气最好能采用过滤分离器。经过分离的湿气进吸附塔脱水。吸附塔共有2台,轮流进行吸附和再生操作。吸附时湿气上进下出,目的是可以采用较高的气速,以减小塔径。在相同气速下,下进上出会造成分子筛床层浮动而造成更多的磨损。加热或冷却采取下进上出,以保证再生后床层下部残留的水最少,达到转到吸附时干气含水最少。同时还有利于再生时吹出上

    17、部积存的杂质和粉尘。吸附和再生周期一般为8小时,含水较少的气也可能为24小时。吸附是不能中断的,当一台完成吸附时,另一台必须完成加热、冷却和阀门切换工作。,再生气流量一般为进气量的515,温度220280。具体要经过多方面因素综合考虑后确定(详见后面计算方法)。为了便于操作和控制,加热和冷却时的流量应当相同,只是时间分配不同。加热可采用热油、盐浴炉或直接火加热炉。有燃气发动机的场合应优先考虑利用排气余热。与天然气凝液回收合在一起供热时,可统一采用用热油炉间接加热(参看图12-2-4-26)。如果热油只用于再生,则不宜采用热油炉间接加热。这是因为再生加热是间歇操作,在停止加热时会造成热媒过热。换

    18、热器可回收部分热能,但不是必需的,很多装置不设换热器。 经过再生后的热天然气需要冷却,一般采用空气冷却器,原因是加热阶段气温较高,采用水冷易结水垢。另一好处是气温较低时可以冷到更低温度,减少再脱水的负荷。为此冷却器出口温度不需要自动调节。冷却后的气流含水不均,加热中期最多,末期逐渐减少到几乎没有。水量很少时分水器的液位不能保持,甚至底部跑气。为此设计应当采取间歇排放。再生后的气经过冷却和分水后的大部分时间仍然含水,需要重新脱水。由于再生过程会产生0.15 MPa左右的压降,需要再压缩才能返回进口湿气内。压缩机可设在图中位置,也可设在干气出口再生用气的流量调节之前。压缩机的压缩比很小,温升很小,

    19、因而不需要冷却。如果操作压力较低,压比偏大导致明显温升,则压缩机宜放在图中再生后的位置。如果下游采用前增压的膨胀机组,可在制动压缩机(膨胀机驱动)增压和冷却后引出一股再生用气。经过再生过程和冷却分离后返回进气分离器。此法的优点是省掉了专门用于再生气循环的两台压缩机。缺点是能耗略高,因为制动压缩机的压比一般在1.4左右,而专用的循环压缩机压比很小。在吸附过程中,分子筛会因磨损出现粉尘。必须经过过滤除掉,以防堵塞下游设备,尤其是流道窄狭难以清洗的板翅式换热器。过滤器一般要两台轮流使用。一些资料提出除掉1m以上的杂质,实际经验表明过滤元件的通道直径能达到5m就能满足要求。过滤元件最好采用刚性的,如金

    20、属的或黏土烧结的,以便通过反吹解堵,减少拆开检修的麻烦。两塔式的处理量一般小于300104m3/d, 原因是受到直径过大钢板过厚的限制。 再生气作燃料方案(再生气不循环)本方案的特点是再生气不循环使用,从而省掉两台专用的再生气压缩机(图12-2-3-12)。如果陆上终端及附近能充分利用这部分气,应当是首选方案。但是在计算用气量时要考虑到夜间用气少时,不会出现多余的气放空。本方案的再生气不循环使用,从而省掉两台专用的再生气压缩机。如果陆上终端及附近能充分利用这部分气,应当是首选方案。但是在计算用气量时要考虑到夜间用气少时,不会出现多余的气放空。如果下游凝液回收采用后增压的膨胀机祖,可考虑由制动压

    21、缩机分出部分外输气作为再生用气。再生后的气供自用燃料后的多余部分可掺回制动压缩机进口。如果回掺气较少,仍能使外输气的水露点达到要求,也是很好的方案。下游凝液回收往往采用膨胀制冷工艺,再生气的压力会降低很多。低压干气用于再生可减少能耗,但在吸附与再生切换时必须严格限制切换速度,否则会导致分子筛严重损坏。由吸附转为再生时,特别是阀门刚开启时压差很大,床层内气速迅速升高,使干燥剂浮动而磨损。吸附的气会因急剧膨胀使吸附剂爆裂。为此必须设置小口径的卸压和充压阀,限制充压和卸压速度,到压差较小时再切换主阀。采用定时自动切换的装置,必须通过严格计算选出合适的充压和卸压阀。阀心大小应以刚打开瞬间的空塔气速不过

    22、多超过最高允许值为准。需要注意的是阀心过小会造成切换时间过长,最好能做到开始缓慢打开,控制卸压或充压速度,逐渐到全开。已有不少装置忽略这一点,使干燥剂过早粉碎失效,甚至只用一两个月。采用手动切换的装置可采用并联的针型阀进行卸压和充压,由于手动速度较慢且可凭节流声音操作,不会出现问题。切换周期较长的小型装置,最好采用手动操作。 湿气再生方案湿气再生常用于硅胶脱水,水露点可达到40。采用流程参看图12-2-13。由于再生气含水,冷吹后床层会残留一些水,必须增加干燥剂数量。如果来气压力较高,含水很少,是一种可选方案。分子筛不适合用于湿气再生。分离后的湿气先分出一股作为再生用气,其流量由限制主气流进行

    23、控制。这一做法使进行吸附的气流压力略低于再生用气,从而使经过再生的气能返回主气流后一并脱水。吸附气流与其它方法一样,也是由上而下。再生时,加热或冷吹气流都采用由上而下。原因是再生气含水较多,如果由下而上冷吹,床层下部的干燥剂会含水,这对吸附不利。由上而下冷吹,气中的水主要在上部被吸掉。2) 三塔吸附 两塔吸附一塔再生方案该法一般采用两台吸附一台再生,其轮流切换流程见图12-2-3-14。在每个吸附周期内总有两台吸附器在进行吸附,但切换时间要错开一半。如果每台吸附时间为8小时,则每4小时要有一台完成再生(包括加热、冷却和切。4小时完成再生比较紧张,因为再生气流速不能过快,温度也不能过高。能比两塔

    24、流程提高多少,需要具体计算核实。有一种做法是在原有两塔的基础上增加一个相同的塔,以提高处理能力。考虑到原有附属加热和冷却等设备变动不大(增加进加热器前再生气与再生后的气换热)。将每台吸附时间延长到12小时,再生时间减为6小时则处理能力可提高三分之一。具体在一天内切换时间分配如下:时间 0 6 12 18 241 吸附 加热 冷却 吸附2 吸附 加热 冷却 吸附3 加热 冷却 吸附 加热 冷却 一塔吸附两塔再生方案该方案为吸附加热和冷却各自一个塔内同时进行,其切换流程见图12-2-3-15。为此每台吸附器要增加两个阀门,自动控制也更复杂。如果吸附周期是8小时,加热或冷却(包括冷却后切换)也在相同

    25、时间内完成。其特点是加热器(炉)是连续运行的,热负荷可低一些。而且冷吹在用于加热,可减少热能消耗。在吸附器与两塔式相同大小和吸附时间不变的条件下,处理量不会增加,但投资和运行费将增加。 如果缩短吸附周期,且吸附气速允许,则处理量可以提高。以吸附周期由8小时缩短到5小时为例,则处理量可提高60。3) 四塔吸附该流程是吸附用两个塔,加热和冷吹各用一个塔,参看图12-2-3-16。两个吸附塔的运行时间错开半个周期,即每半个周期有一台由吸附转入再生。以每台吸附周期8小时为例,同一时间内总有两台在吸附,一台在加热和一台在冷却。每4小时有一台有吸附转为加热。每台的加热或冷却时间均为4小时。切换时间安排如下

    26、:时间 0 8 16 241 吸附 加热 冷吹 吸附2 加热 冷吹 吸附 加热 冷吹3 冷吹 吸附 加热 冷吹 吸附4 吸附 加热 冷吹 吸附 加热8吸附及再生计算1) 吸附计算 计算气量及含水量装置处理能力按国内标准以20,1ata为准。流程模拟以mol/h为准。计算时应折合为设计压力及温度下的体积流量。流程模拟软件可算水量,但不一定准确。建议按图表进行校核。硫化氢和二氧化碳对含水量影响不能忽略。, 初步选择塔径根据设计压力和吸附剂品种,按图12-2-3-17推算空塔气速,然后计算出最小塔径。按常用压力容器系列,取略大于计算値的直径。该图是以床层压降7.5 kPa/m为基础绘制的(压降计算方

    27、法详见随后的压降计算公式12-2-3-3)。 计算床层高度 计算饱和吸水能力按第3条计算干燥剂的饱和吸附能力。考虑干燥剂至少使用3年,分子筛的饱和吸水能力可取13,再乘以相对湿度CS和温度校正系数CT。 传质段高度GPSA工程数据手册推荐分子筛脱水的传质段高度为HMTZ = (Vg/640)0.3Z (12-2-3-1)式中; HMTZ 传质段高度,m Vg - 空塔气速, m/h Z - 系数,直径3.2mm分子筛取0.52,直径1.6mm分子筛取0.26,另一种较老的以硅胶为基础的经验公式是: HMTZ = 1.41Aq 0.7895/(v 0.5506/ 0.2646) (12-2-3-

    28、2)式中; A - 系数,分子筛取0.6,活性氧化铝取0.8,硅胶取1 q - 每m2床层截面的水负荷,kg/(h?m2) v - 空塔气速, m/min 进吸附器气体相对湿度 饱和段高度传质区所吸水量可近似看作是饱和水量的50%, 其余的水应由饱和区承担。由此可算出饱和区高度。 床层总高为饱和区高度与传质区高度之和,按床层总高计算平均吸水能力。建议至少再加0.2m的保护层。床层高一般为直径的24倍,不能小于直径的1.6倍。 压降计算压降计算采用下式: P/LBV CV 2 (12-2-3-3)式中:P/L 压降,kPa/m 黏度,mPa?s 密度,kg/m3V 空塔气速,m/h颗粒类型 B

    29、C3.2mm球3.2mm条1.6mm球1.6mm条 0.06930.08930.18810.2945 3.75x10-75.23 x10-75.74 x10-78.86 x10-7 常数B C如下:分子筛床层设计总压降应在35 kPa左右。最大压降不应超过55 kPa,以免干燥剂被压差和自重压碎。如计算压降值不符合要求,需要改变塔径重新计算。 再生热负荷及气量计算 确定再生时间和切换时间 初选再生气温度,一般取230。露点要求较低和允许残留水略高时可降到200。露点要求很高时可取260280,但必须确保来气不含氧、甲醇,缓蚀剂、重质溶剂和润滑油要很好除掉。 计算加热负荷加热负荷包括吸附水的升温

    30、和解吸热、吸附剂、支撑瓷球及钢材。参照GPSA手册可按以下方法估算加热负荷:1 W1?q (12-2-3-4)_ 2 W2? had?(T4T1) (12-2-3-5) 3 W3?0.5?(T4T1) (12-2-3-6) (1 +2 +3 +4 )?1.1 (12-2-3-7) 式中: 热负荷,kJ 1 水解吸热,kJ/kg 2 分子筛加热负荷,kJ/kg 3 钢材加热负荷,kJ/kgW1 吸附水量,kg W2 吸附剂量,kgW3 钢材总重,kg T1 床层加热后温度, T1 床层初始温度, q 解吸热,kJ/kg,分子筛4200,硅胶或氧化铝3300(包括显热)上式重系数1.1是考虑热损失

    31、10后的需要。系数2.5是是考虑到加热初期温差较大,而后期温差减少很多,大约只有40的热被利用。瓷球加热负荷较少,在GPSA手册估算中倍忽略掉。 计算再生气量阀门切换占用时间如下:再生与吸附压力相近,可取30min.再生与吸附压差较大,在切换前需要卸压或充压时,应在初选塔径时预先计算,并控制空塔气速不超过图12-2-3-17的最大值并计算充压和卸压所需时间。加热需要时间一般约4.5小时,床层冷却时间约3小时。加热需要气量按下式计算: m Q /Cp(Tr -Tb )?th (12-2-3-8)式中:m 加热需要气量,kg/h Q 加热负荷,kJ/h Cp 再生气比如容,kJ/(kg?) Tr 热再生气温度, Tb 床层平均温度, th 床层平均温度,床层平均温度需按图12-2-3-10估算


    注意事项

    本文(天然气脱水理论知识.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开