欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    光伏发电原理.docx

    • 资源ID:4744395       资源大小:804.13KB        全文页数:27页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    光伏发电原理.docx

    1、光伏发电原理 光伏发电原理1.1光伏发电的过去、现在及未来1839年, 法国人Edmund Bequerel 发现了光伏效应,到了1954年, 贝尔实验室的Chapin, Fuller and Pearson 制备了世界上第一个效率为6%的晶体硅太阳电池。从此,航天技术和地面特殊领域的需求驱使对光伏有兴趣的学者进行着艰苦的探索,效率很快由当初的6%提高到10%,并于1958年首先在航天器上得到应用。在后来的10多年里,硅太阳电池在空间的应用不断扩大,工艺不断改进,电池设计不断改型,新的光伏材料也在不断探索之中,这是硅太阳电池发展的第一个时期。第二个时期开始于70年代初,在这个时期对太阳电池材料

    2、、结构和工艺进行了广泛的研究,背表面电场、细栅金属化、浅结表面扩散和表面织构化开始引入到电池的制造工艺中,太阳电池转换效率有了较大提高。与此同时,硅太阳电池开始在地面应用,到了70年代末,地面用太阳电池产量已超过空间电池产量,但单晶硅太阳电池高昂的成本促使科学家们把目光瞄准了其它光伏电池。其间最具影响的是1976年制成了AM1效率达10%的多晶硅太阳电池。同年,RCAs David Sarnoff Research Center 的光伏专家D.E.Carlson 制成了世界上第一个光电转换效率为2.4%的可供实用的非晶硅太阳电池,在这个消息的鼓舞下,迅速掀起了非晶硅太阳电池的研究热潮,并且取得

    3、了很大的成绩,另外CIS/CdS、CdTe/CdS等光伏电池的研究也取得了可喜的成就。进入80年代,硅太阳电池进入快速发展的第三个时期。这个时期的主要特征是把表面钝化技术、降低接触复合效应、后处理提高载流子寿命、改进陷光效应引入到电池的制造工艺中。以各种高效电池为代表,电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大,形成了非晶硅、多晶硅和单晶硅三足鼎立之势。但基础领域的一些问题愈来愈制约着迅猛发展的实践,多线切割技术的发展使人们获得更薄的晶体硅片成为可能,原来的晶体硅太阳电池技术必须做出相应的改变。采用薄的晶体硅片,载流子的表面复合问题就突现了出来;碎片率的上升促使人们得重新设计电

    4、极的制备工艺。只有这样,才能保证得到更高的性能价格比。太阳级单晶硅电池的衰减也逐渐显示出来,多晶硅中的晶界效应限制了多晶硅光伏电池效率的进一步提高,多晶硅光伏电池并没有显示出优于单晶硅电池的成本,非晶硅光伏电池中的SW效应及有限的市场使得首先将这一高新技术产业化的公司面临倒闭的危机。进入90年代后,光伏专家们加紧了对缺陷晶体硅中载流子行为的研究,并将高效工艺产业化,努力将这一最具发展前景的太阳电池稳步推向前进1-3。光伏电池是光伏发电系统的心脏,其光电转换效率和成本对光伏发电的进程具有决定性的影响。自1941年出现了有关硅光伏电池的报道之后,科学家们就没有停止过对进一步提高效率和廉价新材料的研

    5、究,半个世纪以来,人们为太阳电池的研究、发展和产业化付出了很大的努力。光伏技术中新技术、新工艺、新材料和新结构层出不穷,研制成功许多种太阳电池。在太阳电池的整个发展历程中,先后出现过各种不同结构的电池,从结构上看,有同质n-p结、肖特基(MS)电池、MIS电池、MINP电池、异质结电池、垂直多结等类型。其中同质结中的钝化发射区电池(PERL),钝化发射区背面整个扩散电池(PERT),刻槽埋栅电池(BCSC),背面点接触电池(PCC),深结局部背场电池(LBSF)等是高效电池的代表。目前世界上太阳电池的实验室效率最高水平:单晶硅电池24.7%(4cm2),多晶硅电池19.8%(4cm2),InG

    6、aP/GaAs双结电池30.28%(AM1),非晶硅电池14.5%(初始),12.8%(稳定),CdTe/CdS电池为15.8%,带硅电池14.6%,二氧化钛有机纳米电池10.96%4。经过光伏专家们的辛勤劳动,晶体硅(包括单晶硅和多晶硅)太阳电池的工业化生产效率已从上世纪80年代的10-12%提高到目前的15-17%,单片面积也从当时的78.5cm2增加到243.36 cm2,硅片的厚度也从当时的450um降低到当前的180um,这极大地降低了光伏发电的成本,更为重要的是人们对太阳能成为未来替代能源树立了信心,一些国家和政府相继制定了光伏发电上网的补贴政策, 以加快光伏发电的商业化进程5。目

    7、前,光伏市场上销售的太阳电池主要是基于片状硅的第一代太阳电池,包括单晶硅太阳电池和多晶硅太阳电池;基于非晶硅及多晶化合物半导体的第二代太阳电池约占市场份额不足整个光伏市场的10%,包括非晶硅、CIS、 CdTe 、纳米氧化钛染料电池及多晶硅薄膜太阳电池。在第二代太阳电池中,a-Si:H太阳电池存在衰减,CIS太阳电池在制造上存在难题,CdTe太阳电池对环境有害,纳米氧化钛染料电池的发展还不明朗,因此人们普遍认为第一代太阳电池将会在很长的一段时间里是太阳能光伏发电的主力。历史进入二十一世纪,环境污染和能源短缺迫人们寻找可持续发展且清洁的能源发展方向,最有效的行动就是采用清洁的可再生能源技术替代常

    8、规化石燃料能源技术。从上世纪70年代地面应用开始,美国就先后制定了一系列鼓励光伏发电应用政策;1974年日本开始执行阳光计划,颁布了相应的鼓励政策。此后许多国家,先后颁布了几十种鼓励光伏发电应用的政策,包括减免税、补贴、贴息、租赁、电力配额等政策。但截至2004年以前,各种政策所发挥的作用都相当有限。如上世纪90年代初,克林顿政府提出百万屋顶计划及相应鼓励政策就收效不大,但直到德国 的可再生能源法出现,人们才真正找到了科学的、行之有效的措施。上世纪90年代中后期德国对世界几种较成熟的光伏技术进行认真研究和分析。依据光伏组件30年来的成本变化规律以及规模效应,得出光伏组件成本随累计安装量呈指数下

    9、降趋势(Learning Curve),安装量每扩大一倍,成本下降20。分析结果表明,只要通过开拓市场,扩大组件生产,晶硅电池、CdTe电池和CIGS电池等都可以使组件成本下降到1美元/W左右。上述的研究结果成为上网电价法的理论依据。德国在实施十万屋顶计划(199920003)基础上,对光伏上网电价进行修订,2004年1月1日实施。修正后的上网电价更加科学、更加合理,更加容易操作。上网电价法还规定,以后每年上网电价下降5,既符合实际,又符合上网电价法实施的目的。自2004年起,德国一跃成为世界光伏市场和光伏产业发展最快的国家,并拉动了其他国家光伏产业的发展,表1-1给出了德国的上网电价,表1-

    10、2给出了德国2008年的PV上网电价。对比表1-1和表1-2可知:可再生能源法是加速可再生能源发展、实现及时替代化石燃料能源的唯一保证和必要条件。上网电价法 的科学性、有效性和可操作性,很快被世界许多国家认同、接受和效法,目前已经有40 多个国家和地区实施了上网电价法 ,光伏市场从德国很快扩张到整个欧洲、美国、南韩国家,而且还正在向更大范围扩大6-8。毫无疑问,在各个国家可再生能源法的保障下,太阳能将会成为人类的支柱能源之一,人们预测:本实际中叶前能源结构将发生根本性变革,如图1-1所示。图1-2给出了欧洲JRC预测本世纪内常规能源及新能源发展趋势。表1-1 德国2004年的PV上网电价上网价

    11、格/ kWh100kWp建筑屋顶57.4欧分54.6欧分54.0欧分建筑幕帘62.4欧分59.6欧分59.0欧分地面系统45.7欧分45.7欧分45.7欧分表1-2 德国2008年的PV上网电价上网价格/ kWh100kWp建筑屋顶46.75欧分44.48欧分43.99欧分建筑幕帘 35.54欧分35.54欧分35.54欧分地面系统35.49欧分35.49欧分35.49欧分图1-1能源结构变化趋势 图1-2 2004年欧洲JRC预测本世纪内常规能源及新能源发展趋势2007年世界太阳电池产量达4410 MW,近10年太阳电池的年平均增长率为42.7%,近5年的年平均增长率为51, 在原材料供应紧

    12、张的情况下,2006和2007年太阳电池的年增长率仍然分别达到50和67%。 从资源的潜力和长远前景来看,光伏发电是很具潜力的可再生替代能源。图1-3示出了1999-2007年全球太阳电池产量的增长情况。 图1-3 1998-2007年全球太阳电池产量的增长情况世界上一些发达国家纷纷宣布了自己的光伏发展计划,美国能源部国家光伏规划目标是到2010年光伏发电装机达到4.7GW;日本计划到2010年光伏发电装机达到5GW;欧洲提出到2010年光伏发电装机达到3GW ;再加上其它国家近年一直保持占世界光伏组件总产量10%左右的装机量,预计到2010年,世界光伏发电累计安装容量达到15GW。太阳能发电

    13、主要用于并网发电,在美国、日本、德国等国家,已有专业从事太阳能发电的公司,即这些公司租用土地建设并经营太阳能发电厂,他们通过将太阳能产生的电力销售给电力公司来获利(有可再生能源法保障)。一些个人也在自己的屋顶上利用太阳能发电,通过并网逆变器和大电网并网。图1-4示出了正在国外建设的家庭太阳能发电方案。图1-4正在国外建设的家庭太阳能发电方案我国的光伏产业自2003年以来,以超常的速度发展,年增长率达到100%-300%。2006年我国太阳电池产量438MWp,占世界总产量2561.2MWp的17.1%,超过美国179.6MWp),成为继日本(926.9MWp)和欧洲(680.3MWp)之后的第

    14、三大太阳电池生产国,2007年我国太阳电池产量1088MWp,超过日本(920MWp)和欧洲(1062.8MWp),成为世界第一大太阳电池生产国。在短短的四年间,我国光伏电池的产量,由2002年的仅占世界总产量的1.07%,增长到2007年的占27.2%,图1-5给出了世界各国近几年来太阳电池的生产情况,从该表中可直观地看出我国近几年的发展情况9-12。图1-5 世界各国近几年来太阳电池的生产情况表1-3给出了2007年电池产量等于和大于20MWp的生产商排名,共有35家公司表中有名,其中14家为中国公司(4家台湾公司),占35家的40 。表1-3 2007年电池产量等于和大于20MWp的生产

    15、商排名 序号公司名称2006年2007年产量,MWp排名产量,MWp排名1Q-Cell(DE)253.12389.212Sharp(JP)434.41363.023Suntech(CH)157.5432734Kyocera(JP)180320745Firstsolar(US+DE)601320746Motech(TW)102719657Sanyo(JP)155516568SunPower(PH)62.711150.079Baoding Yingli(CH)35.017142.5810Solar world(whole)86.09130.0911Misubishi(JP) 11161211012

    16、Jing-Ao(CH)25.020113.21113BP Solar(whole)85.79101.61214Solarfun(CH)25.02088.01315Isofoton(SP)6112851416Schott Solar(DEUS)93.0880.01517CEEG Nanjing(CH)54.01478.01618E-TON(TW)32.51772.01719ATS-Solar(CH)2520551820Gintech(TW)15.02155.01821Ersolr(DE)4015531922Ever-Q(DE)152149.82023United Solar(US)28.0194

    17、8.02124Scancell(NW)37.01646.02225Ningbo Solar(CH)3018452326Delsolar(TW)202045.02327Kaneka(JP)28.01940.02428Solland(NE)18.02137.02529Trina Solar(CH)7.037.02530Sunways(DE)30.01836.02631Jiangsu Junxin(CH)14352732Photovoltaic(BE)18.029.12833Microsol Inter.(UAE)15.028.02934交大泰阳(CH)21253035Photowatt242031

    18、和产业相适应,欧美和日本等发达国家用于光伏研究的科研经费大幅增加,我国的光伏研究也日渐活跃,国家自然科学基金及“973”项目都加大了对光伏发电的支持,研究队伍也随之加强,可以预料:在大量资金和人力的投入下,光伏产业和研究必将取得长足的进展。1.2晶体硅太阳电池原理如图2-1(a)所示,在一块半导体中n型和p型的接触处,n区一侧的电子浓度高,形成一个要向p区扩散的正电荷区域;同样,p区一侧的空穴浓度高,形成一个要向n区扩散的负电荷区域。n区和p区交界面两侧的正、负电荷薄层区域, 称之为“空间电荷区”, 即p-n结,如图2-1(b)所示。p-n结内有一个由p-n结内部电荷产生的, 从n区指向p区的

    19、电场,叫做“内建电场”或“自建电场”。由于存在内建电场, 在空间电荷区内将产生载流子的漂移运动, 使电子由p区拉回n区,使空穴由n区拉回p区,其运动方向正好和扩散运动的方向相反。 (a) (b)图2-1 (a) 形成P-N 结前载流子的扩散过程 (b) 空间电荷区和内建电场开始时,扩散运动占优势,空间电荷区内两侧的正负电荷逐渐增加,空间电荷区增宽,内建电场增强;随着内建电场的增强,漂移运动也随之增强,阻止扩散运动的进行,使其逐步减弱;最后,扩散的载流子数目和漂移的载流子数目相等而运动方向相反,达到动态平衡。此时在内建电场两边,n区的电势高,p区的电势低,这个电势差称作p-n结势垒,也叫内建电势

    20、差或接触电势差,用符号表示。电子从n区流向p区, p区相对于n区的电势差为负值。由于p区相对于n区的电势为 (取n区电势为零),所以p区中所有电子都具有一个附加电势能:通常将称作势垒高度。当p-n结加上正向偏压(即p区接电源的正极,n区接负极),此时外加电压的方向与内建电场的方向相反,使空间电荷区中的电场减弱。这样就打破了扩散运动和漂移运动的相对平衡,有电子源源不断地从n区扩散到p 区,空穴从p区扩散到n区,使载流子的扩散运动超过漂移运动。由于n区电子和p 区空穴均是多子,通过p-n结的电流(称为正向电流)很大。当p-n结加上反向偏压(即n区接电源的正极, p区接负极),此时外加电压的方向与内

    21、建电场的方向相同, 增强了空间电荷区中的电场,载流子的漂移运动超过扩散运动。这时n区中的空穴一旦到达空间电荷区边界,就要被电场拉向p区;p区的电子一旦到达空间电荷区边界,也要被电场拉向n 区。它们构成p-n结的反向电流,方向是由n区流向p区。由于n区中的空穴和p区的电子均为少子,故通过p-n结的反向电流很快饱和, 而且很小。电流容易从p区流向n区,不易从相反的方向通过p-n结,这就是p-n结的单向导电性。当太阳电池受到光照时,光在n区、空间电荷区和p区被吸收,分别产生电子空穴对。由于从太阳电池表面到体内入射光强度成指数衰减,在各处产生光生载流子的数量有差别, 沿光强衰减方向将形成光生载流子的浓

    22、度梯度, 从而产生载流子的扩散运动。n区中产生的光生载流子到达pn结区n侧边界时, 由于内建电场的方向是从n区指向p区,静电力立即将光生空穴拉到p区,光生电子阻留在n 区。同理,从p区产生的光生电子到达pn结区p侧边界时,立即被内建电场拉向n 区, 空穴被阻留在p区。同样,空间电荷区中产生的光生电子空穴对则自然被内建电场分别拉向n区和p区。pn结及两边产生的光生载流子就被内建电场分离,在p 区聚集光生空穴, 在n区聚集光生电子,使p区带正电,n区带负电,在p-n结两边产生光生电动势。上述过程通常称作光生伏打效应或光伏效应。当太阳电池的两端接上负载,这些分离的电荷就形成电流,如图2-2 。 图2

    23、-2 太阳电池的发电原理图1.3晶体硅太阳电池的结构与性能参数1.3.1晶体硅太阳电池的结构 晶体硅太阳电池的结构如图2-3所示。先在硅片上制备适当的陷光结构,以利减小入射光在硅片表面的反射,电池的迎光面有一层减反射膜,也起减小入射光在硅片表面反射的作用,可以说:绒面和光学减反射膜是相得益彰,前电极(银浆)及背电极(铝浆)是用丝网印刷的工艺形成的,背电极同时也形成了一个高低结,磷扩散既可用链式烧结炉也可用管式扩散炉15。图2-3晶体硅太阳电池的结构1.3.2晶体硅太阳电池的性能参数1)太阳光谱及标准测试条件太阳是以光辐射的方式将能量输送到地球表面上的,阳光穿过地球大气层时被吸收、散射或反射,因

    24、而太阳辐照度将被削弱。这种削弱还与太阳辐射穿透大气层的厚度、太阳辐射的方向等有关,通常用大气质量(AM)来表示上述情况。在地球大气层之外,地球-太阳平均距离处,垂直于太阳光方向的单位面积上的辐射能基本为一常数。这个辐射强度称为太阳常数,或称此辐射为大气质量为零(AM0)的辐射。目前,光伏工作中采用的太阳常数值是1.353kW/m2,这个数值是由装在气球,高空飞机和宇宙飞船上的仪器的测量值加权平均而确定的。阳光能量的精确分布对于太阳电池的工作很重要,因为这些电池对于不同波长的光有不同的反应。太阳在头顶正上方时,路程最短,太阳光线的实际路程和此最短路程之比称为光学大气质量。太阳在头顶正上方时,光学

    25、大气质量为1,这时的辐射称为大气质量为1(AM1)辐射。当太阳和头顶正上方成一个角度时,大气质量由下式得出:大气质量=1/cosAM表示入射到地球上的大气的太阳直射光所通过的路程长度,定义为 (2-1)式中: b0标准大气压b测定时的大气压Z0太阳天顶距离一般情况下,b b0,例如,AM1相当于太阳在天顶位置时的情况,AM2相当于太阳高度角为60时的情况,AM0则表示在宇宙空间中的分布。在其他大气变量不变的情况下,随着大气质量的增加,到达地球的能量在所有波段都遭到衰减。在阳光的光谱分布中,吸收带附近衰减更为严重。与地球大气层外的情况相反,地面阳光的强度和光谱成分变化都很大。因此为了对不同地点测

    26、得的不同太阳电池的性能进行有意义的比较,就必须确定一个地面标准,然后参照这个标准进行测量。(一般采用AM1.5的分布,即总功率密度为1KW/m2 (100mW/cm2),即接近地球表面接收到的功率密度的最大值)。图2-4 太阳能光谱分布 太阳电池的光电转换效率和测试条件紧密相关,为了有一个统一的标准,人们规定标准测试条件(STC)为:AM1.5;100mW/cm2;25。2)晶体硅太阳电池的性能参数用于描述晶体硅太阳电池的性能参数有开路电压、短路电流、工作电压、工作电流、填充因子、光电转换效率。图2-5 晶体硅太阳电池的等效电路晶体硅太阳电池的等效电路如图2-5所示,图中Rs为太阳电池等效串联

    27、电阻,包括:太阳电池的基区电阻扩散区的薄层电阻,电极接触电阻等,在运行时和负载串联在同一回路内;Rsh为太阳电池等效并联电阻,即在太阳电池内部产生的光生电流, 有一部分通过电池的边缘漏电而损失,相当于一个泄漏电阻并联在电池的两极之间;RL为负载电阻;Iph为光生载流子在p-n结内电场作用下漂移运动产生的电流,称为光生电流;为流过太阳电池二极管的电流; Ish为流过并联电阻Rsh的电流16。当流进负载RL的电流为I,负载的端电压为V时,则由图2-5可得17: (2-2) 上式中P就是太阳电池被照明时在负载上得到的输出功率。图2-5太阳电池的典型负载特性曲线图中曲线与纵坐标的交点就是太阳电池的短路

    28、电流,分析短路电流的最方便的方法是将太阳光谱划分成许多微小光谱区域,每一微小区域只有很窄的波长范围,并计算出每一微小区域光谱所对应的电流,电池的总短路电流是全光谱贡献的总和,表达式如下: (2-3)式中 0 本征吸收波长极限; R()半导体器件表面反射率; F()太阳光谱中波长为+d间隔内的光子数。实际半导体表面的反射率与入射光的波长有关,反射率一般为3050。为防止表面的反射,在半导体表面沉积折射率介于半导体折射率和空气折射率之间的透明薄膜层。这个薄膜层称为减反射膜(Antireflective coating)18。设半导体、减反射膜、空气的折射率分别为n2、n1、n0,减反射膜厚度为d1

    29、,则反射率R为 (2-4)式中: r1=(n0 - n1)/(n0 + n1) r2=(n1 - n2)/(n1 + n2) =2n1d1/ 波长显然,减反射膜的厚度d1为1/4波长时,R为最小。即时, (2-5)一般在太阳光谱的峰值波长处,使得R变为最小,以此来决定d1的值。图中曲线与横坐标的交点就是太阳电池的开路电压,太阳电池的开路电压是当太阳电池处于开路状态时,对应光电流的大小产生的电动势。设I=0(开路),IphISC,则 (2-6)在可以忽略串联、并联电阻的影响时,ISC为与入射光强度成正比的值,在很弱的阳光下,ISCI0, (2-8)由此可见,在较弱阳光时,硅太阳电池的开路电压随光

    30、的强度作近似直线的变化。而当有较强的阳光时,VOC则与入射光的强度的对数成正比。当负载从零变到无穷大时,调节负载电阻的大小到某一值时,在曲线上得到一点M,对应的工作电流Im和工作电压Vm之积最大。 (2-9)我们称M点为该太阳电池的最佳工作点,Im为最佳工作电流,Vm为最佳工作电压,Pm为最大输出功率。最大输出功率与(VocIsc)之比为填充因数(FF),这是用以衡量太阳电池输出特性好坏的重要指标之一。 (2-10)光电转换效率EFF为 (2-11)其中,A为太阳电池的总面积,Pin为单位面积光的入射功率。通常,温度和光强等会影响太阳电池的输出性能,图2-6给出了理想情况下电池伏安特性及功率随温度和光强的变化规律。图2-6 理想情


    注意事项

    本文(光伏发电原理.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开