欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    量子密钥分配的基本原理.ppt

    • 资源ID:298712       资源大小:2.91MB        全文页数:39页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    量子密钥分配的基本原理.ppt

    1、1,量子密码学:从“不可破译的密码”到“量子骇客”,戚兵bing.qiutoronto.ca电子与计算机工程系,多伦多大学,加拿大,2,信息时代?密码时代?,儿子的生日+的前5位+姨妈的小名+?,3,如何记住你的密码,密码:65423木条长度=0.65423m,长度测量 读出密码,4,信息与测量,信息的获取涉及测量过程;测量精度决定可获取的信息量;经典物理测量过程可以不改变被测物体状态;窃听者可以获取信息而不被发现。量子物理测量过程一般会改变被测物体状态(测不准原理);量子力学提供了探测窃听的手段。,5,报告内容,量子密码学简介;实际量子密钥分配(QKD)系统安全性研究安全漏洞及攻击方案防御措

    2、施总结,量子密钥分配(QKD)的基本原理,6,7,现代密码学中“不可破译”的密码“一次一密”加密方式,明文,011010,XOR 110010,XOR=Exclusive-OR,101000,密文,通道,101000,密文,XOR 110010,011010,明文,如果1)密钥的长度=信息的长度2)密钥只使用一次“一次一密”原理上绝对安全(Shannon 1949)如何在发送者与接收者间建立密钥?密钥分配问题,发送者Alice,窃听者Eve,接收者Bob,密钥,密钥,VENONA Project:Silly Bugs Can Kill Serious Cryptosystems,Soviet

    3、Union spied in Manhattan project!Spies communications with Moscow were encrypted by one-time pad.Owing to procedural errors,Soviet re-used one-time-pad!From 1948 to 1951,numerous Soviet spies were uncovered and prosecuted.Today,everyone can view these encrypted tables.,8,9,量子力学:测量过程 对量子态产生扰动,量子密钥分配的

    4、基本原理,过高的比特误码率窃听者的存在,10,要点1利用单个量子态编码:例如单个光子的偏振态。,!Eve 可以进行“截取-测量-再发送”攻击,实例:BB84协议(1),11,Alice,Bob,90,实例:BB84协议(2),要点2:两组非对易“基”Alice/Bob随机改变“发送基”/“测量基”Alice/Bob 只保留“相同基”的数据,12,Alice编码基一“+”:0 偏振“0”;90偏振“1”基二“”:45 偏振“0”;135偏振“1”Bob随机选取测量基:“+”-0/90 或“”-45/135,实例:BB84协议(3),实例:BB84协议(4),13,安全性的直观理解量子力学:不可能

    5、区分0/45/90/135偏振的单光子量子非克隆原理;Eve随机选取基测量,再发送引入比特误差(25%);Eve获得的信息量越大比特误差率越高;安全性证明:建立比特误差率与Eve的最大信息量间的关系。只要I(A:B)I(A:E)或者I(A:B)I(E:B),Alice和Bob就可以产生密钥。实际系统中噪声的影响无法区分噪声引入的比特误差与Eve引入的比特误差;保守的估计:所有的比特误差归结于Eve的攻击;高噪声的系统无法证明安全性。,量子密钥分配中的传统信息通道,14,Alice与Bob间的传统认证通道防止“Man-in-the-middle”攻击;利用传统密码学方法实现,Alice和Bob预

    6、先建立密钥;QKD密钥扩展协议。比较编码基/测量基;比特误差率的估计;误差校正(Error Correction):产生全同密钥;隐私放大(Privacy Amplification):产生安全的密钥。,现状及未来,15,实验系统距离:自由空间:150km;光纤:250km效率:(50km):1Mbits/S商用系统距离:100km(光纤)效率:10Kbits/S,全球QKD网络传统中继站量子中继器卫星,欧盟(2008),美国(2005),日本(2010),中国(2009),16,QKD 网络,17,商业化QKD系统,美国,MAGIQ TECH.,瑞士,ID QUANTIQUE,中国,安徽问天

    7、量子科技股份有限公司,实际量子密钥分配系统安全性研究,18,19,Quantum cryptography:Seeking absolute security,Quantum cryptography is theoretically unbreakable,yet a handful of physicists are finding ways to hack into its secrets.Geoff Brumfiel finds out how.,Nature 447,372-373(24 May 2007),“不可破译”的密码?,20,理想QKD 协议与实际系统的差别,QKD 协议,

    8、Hilbert 空间,21,研究方法,直接方法建立尽可能完善的模型;列出模型背后所有的假设;在实际系统中验证上述假设。间接方法寻找安全性证明中忽略的问题;针对上述问题设计攻击方案(量子骇客);设计补救措施。设计“不依赖”于实际系统的QKD协议。,22,Gottesman&Lo,Physics Today,53,22-27(2000),“Traditionally,breaking cryptographic protocols has been considered to be as important as making themthe protocols that survive are

    9、more likely to be truly secure.The same standard will have to be applied to QKD.”,Hacking is an effective way to find potential loopholes,23,针对测量系统的攻击,实用的单光子探测器低探测效率;暗噪声;不能分辨光子数。,24,后选择(Post-selection)及潜在问题,什么是“Post-selection”?多次重复特定实验;选择性保留某些实验结果。Post-selection 应用前提“fair sampling”假设。BB84 QKD 协议中的 P

    10、ost-selection只有一个单光子探测器响应(有效探测);两个单光子探测器同时响应(?);两个单光子探测器都没响应(?)。,25,“Time-shift”攻击基本原理,1.工作在门控模式的单光子探测器,B.Qi,C.-H.F.Fung,H.-K.Lo,and X.Ma,Quant.Info.Compu.7,73(2007).,26,Eve 随机“时移”量子信号 01 or 10;对应每一个信号,特定的单光子探测器有更高的效率;Eve 获得密钥部分信息。,B.Qi,C.-H.F.Fung,H.-K.Lo,and X.Ma,Quant.Info.Compu.7,73(2007).,“Time

    11、-shift”攻击基本原理,27,“Time-shift”攻击实验,Y.Zhao,C.-H.F.Fung,B.Qi,C.Chen,H.-K.Lo,Physical Review A 78 042333(2008),商用QKD系统(瑞士,ID QUANTIQUE)OVDL:可调光学延迟首次成功攻击商用QKD系统,28,攻击实验结果,Y.Zhao,C.-H.F.Fung,B.Qi,C.Chen,and H.-K.Lo,PRA 78:042333(2008).,Lower bound(ignoring the attack)6.81e-5,Upper bound(considering the at

    12、tack)6.76e-5,29,为什么攻击会成功?,Alice将随机数编码在单光子的偏振态;Eve将她自己的随机数编码在同一个光子的其它自由度(时移);测量前,Alice的随机数同Eve的随机数相互独立;Bob的非理想探测器(探测效率不匹配)“Post-select”Alice和Eve比特值相同的事件(“fair sampling”不再成立)。,30,防御措施,精确检测信号到达时间;四相位调制方案Bob随机改变单光子探测器与比特值的对应关系;,*C.-H.F.Fung,K.Tamaki,B.Qi,H.-K.Lo,and X.Ma,QIC 9:131(2009),探测器效率不匹配条件下的安全性证

    13、明*,硬件措施,软件措施,31,教训,QKD协议的安全性 实际系统的安全性;Eve利用实际系统的不完善发起攻击;一旦发现了安全漏洞,找到相应的防御措施不太困难;如何寻找安全漏洞?“Quantum hacking”更通用的解决方案?设计“不依赖”于实际系统的QKD协议,32,更通用的解决方案(1),四相位调制方案,Bob 随机改变单光子探测器与比特值的对应关系;Eve 即使知道特定的探测器响应,也无法获得对应的比特值。,“1”or“0”,“0”or“1”,33,Failed:detector blinding attack*,利用强光照射单光子探测器进入线性工作状态;Eve进行“截取再发送”攻击

    14、;只有当Bob和Eve使用的基相同,探测器才会相应“basis dependent”post-selection,*Lars Lydersen,et al.,Nature Photonics 4,686-689(2010),34,Time-Reversed EPR Quantum Key Distribution*,H.Inamori,Algorithmica 34,pp.340-365(2002),假设:Alice 与 Bob 正确制备量子态。优点:测量系统可以完全受Eve控制。,更通用的解决方案(2),Basic idea:Alice and Bob can perform Bell in

    15、equalities test without knowing how the device actually works.As long as Alice and Bob can verify the existence of entanglement,it is possible to generate secure key.,35,“Device independent”QKD1,2,1 D.Mayers and A.C.-C.Yao,in Proceedings of the 39th Annual Symposium on Foundations of Computer Scienc

    16、e(FOCS98)(IEEE Computer Society,Washington,DC,1998),p.503.2 A.Acn,N.Brunner,N.Gisin,S.Massar,S.Pironio and V.Scarani,Phys.Rev.Lett.98,230501(2007).,假设量子力学是正确的;测量基的选择是完全随机的;信息不能随意从Alice和Bob的系统中泄露出去。局限DI-QKD is highly impractical as it requires a near unity detection efficiency and even then generates

    17、 an extremely low key rate(of order 10-10 bit per pulse)at practical distances 1,2.,36,1 N.Gisin,S.Pironio and N.Sangouard,Phys.Rev.Lett.105,070501(2010).2 M.Curty and T.Moroder,Phys.Rev.A 84,010304(R)(2011).,“Device independent”QKD,37,总结,QKD协议的安全性 实际系统的安全性两种研究手段设计“不依赖”于实际系统的QKD协议攻击测试的重要性。,38,Acknowledgements,39,“Quantum encryption”Bing Qi,Li Qian,and Hoi-Kwong LoGabriel Cristobal,Peter Schelkens,HugoThienpont(Eds.)Optical and Digital Image Processing:Fundamentals and Applications,Weinheim:WILEY-VCH Verlag GmbH&Co.KGaA,769-787(2011).(An extended version is available online:arXiv:1002.1237v2),


    注意事项

    本文(量子密钥分配的基本原理.ppt)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开