欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    第一章 三坐标测量机的概述.docx

    • 资源ID:16543808       资源大小:421.31KB        全文页数:31页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第一章 三坐标测量机的概述.docx

    1、第一章 三坐标测量机的概述第一章 三坐标测量机的概述一、 三坐标测量机的发展历史世界上第一台测量机是英国FERRANTI公司于1956年研制成功,当时的测量方式是测头接触工件后,靠脚踏板来记录当前坐标值,然后使用计算器来计算元素间的位置关系。1962年菲亚特汽车公司一位质量工程师在意大利都灵创建了世界上第一家专业制造坐标测量设备的公司,即先在仍然知名的DEA(Digital Electronic Automation)公司。随后,DEA公司先后推出了手动、机动并首先使用气浮导轨技术的测量机,也相应配备了各种测头和软件,使之成为世界上最大的测量机供应商之一。1964年,瑞士SIP公司开始使用软件

    2、来计算两点间的距离,开始了利用软件进行测量数据计算的时代。随后的国ZEISS公司使用计算机辅助工件坐标系代替机械对准,从此测量机具备了对工件基本几何元素尺寸、形位公差的检测功能。随着计算机的飞速发展,测量机技术进入了CNC控制机时代,完成了复杂机械零件的测量和空间自由曲线曲面的测量,测量模式增加和完善了自学习功能,改善了人机界面,使用专门测量语言,提高了测量程序的开发效率。从90年代开始,随着工业制造行业向集成化、柔性化和信息化发展,产品的设计、制造和检测趋向一体化,这就对作为检测设备的三坐标测量机提出了更高的要求,从而提出了新一代测量机的概念。其特点是:1、具有与外界设备通讯的功能;2、具有

    3、与CAD系统直接对话的标准数据协议格式;3、硬件电路趋于集成化,并以计算机扩展卡的形式,成为计算机的大型外部设备。到1992年全球就拥有三坐标测量机46100台,工业发达的欧美、日韩每6-7台机床配备一台三坐标测量机,我国三坐标测量机生产始于20世纪70年代,现在已被广泛应用在机械制造、汽车、家电、电子、模具和航空航天等制造领域,并保持快速增长。国内外生产三坐标的厂家较多如:德国的蔡司、意大利的Cord3、日本的三丰、美国的谢菲尔德,国内的海克斯康、青岛雷顿、西安爱德华、北京航空精密机械研究所(303所)、上海机床厂、上海第三机床厂、北京二机床、北京机床研究所、天津大学和新天光学仪器厂。二、

    4、三坐标测量机发展的意义和作用随着人们生活水平的提高和制造业的快速发展,特别是机床、机械、汽车、航空航天和电子工业,各种复杂零件的研制和生产需要先进的检测技术;同时为应对全球竞争,生产现场非常重视提高加工效率和降低生产成本,其中,最重要的便是生产出高质量的产品。为此,必须实行严格的质量管理,只有在保证高质量生产的前提下,制造业才能生存和发展。因此,为确保零件的尺寸和技术性能符合要求,必须进行精确的测量,因而体现三维测量技术的三坐标测量机应运而生,并迅速发展和日趋完善。三维测量是基于以下的客观要求发展起来的。1、越来越多的工件需要进行空间三维测量,而传统的测量方法不能满足生产的需要。传统测量方法是

    5、指用传统测量工具(如千分表、量块、卡尺等)进行的测量,属相对测量,因其测量基准为被加工面,而不是直接的主轴基准,是一种过度基准,再加上传统测量工具本身精度不高,同时人为测量操作随机性误差也较大,这些因素导致测量结果不准;另一方面传统测量工具量程小、被测工件尺寸、形状受到限制,许多测量任务(如尺寸大、形状较复杂)用传统测量工具完成不了,且占用机时较长。2、 由于机械加工、数控机床加工及自动加工线的发展,生产节拍的加快,加工一个零件仅有几十分钟或几分钟,要求加快对复杂工件的检测。例如:汽车和摩托车都采用流水生产线,每辆车上有几千甚至上万个零件,这些零件是由专业化厂分散生产,最后集中部装和总装,每隔

    6、几分钟就生产出一辆车。3、 在制造业中,大多数产品都是按照CAD数学模型在数控机床上制造完成的,它与原CAD数学模型相比,确定其在加工制造中产生的误差,就需用三坐标测量机进行测量。在三坐标测量机的软件系统中可以用图形方式显示原CAD数学模型,再按照可视化方式从图形上确定被测点,得到被测点的X、Y、Z坐标值及法向矢量,便可生成自动测量程序。三坐标测量机可按法线方向对工件进行精确测量,获得准确的坐标测量结果,也可与原CAD数学模型进行比较并以图形方式显示,生成坐标检测报告(包括文本报告和图表报告),全过程直观快捷,而用传统的检测方法则无法完成。4、 随着生产规模日益扩大,加工精度不断提高,除了需要

    7、高精度三坐标测量机的计量室检测外,为了便于直接检测工件,测量往往需要在加工车间进行,或将测量机直接串连到生产线上。检验的零件数量加大,科学化管理程度加强,因而需要各种精度的坐标测量机,以满足生产的需要。5、 实现逆向(反求)工程的需要,例如随着模具生产的发展,在当前的生产制造中往往会碰到这么一种情况,客户能提供给制造者的只有实物而没有任何图纸或CAD数据,特别是样件中有曲线、曲面等很难通过测量获得其准确的数据的复杂模型。在这种情况下,传统的加工方法是使用雕刻法或其他方法制作出一个一比一的模具,再用模具进行生产。这种方法无法获得工件准确的尺寸图纸,也很难对其外型进行修改。现在采用的是三维扫描测量

    8、出工件轮廓曲线、曲面等数据。因此需要与“数控机床”或“加工中心”相配合的三维检测技术。综上所述,三坐标测量机的出现是标志计量仪器从古典的手动方式向现代化自动测试技术过渡的一个里程碑。三坐标测量机在下述方面对三维测量技术有重要作用。1、实现了对基本的几何元素的高效率、高精度测量与评定,解决了复杂形状表面轮廓尺寸的测量,例如箱体零件的孔径与孔位、叶片与齿轮、汽车与飞机等的外廓尺寸检测。2、 提高了三维测量的测量精度,目前高精度的坐标测量机的单轴精度,每米长度内可达1um以内,三维空间精度可达1um-2um。对于车间检测用的三坐标测量机,每米测量精度单轴也达3um-4um。3、 由于三坐标测量机可与

    9、数控机床和加工中心配套组成生产加工线或柔性制造系统,从而促进了自动生产线的发展。4、 随着三坐标测量机的精度不断提高,自动化程序不断发展,促进了三维测量技术的进步,大大地提高了测量效率。尤其是电子计算机的引入,不但便于数据处理,而且可以完成CNC的控制功能,可缩短测量时间达95%以上。5、 随着激光扫描技术的不断成熟,同时满足了高精度测量(质量检测)和激光扫描(逆向工程)多功能复合型的三坐标测量机发展更好地满足了用户需求,大大降低用户投入成本,提高工作效率。三、 三坐标测量机的原理以及长度测量示值误差、空间探测误差1、 三坐标测量机的原理三坐标测量机是基于坐标测量的通用化数字测量设备。它首先将

    10、各被测几何元素的测量转化为对这些几何元素上一些点集坐标位置的测量,在测得这些点的坐标位置后,再根据这些点的空间坐标值,经过数学运算求出其尺寸和形位误差。如图1-1-1所示,要测量工件上一圆柱孔的直径,可以在垂直于孔轴线的截面I内,触测内孔壁上三个点(点1、2、3),则根据这三点的坐标值就可计算出孔的直径及圆心坐标OI;如果在该截面内触测更多的点(点1,2,n,n为测点数),则可根据最小二乘法或最小条件法计算出该截面圆的圆度误差;如果对多个垂直于孔轴线的截面圆(I,II,m,m为测量的截面圆数)进行测量,则根据测得点的坐标值可计算出孔的圆柱度误差以及各截面圆的圆心坐标,再根据各圆心坐标值又可计算

    11、出孔轴线位置;如果再在孔端面A上触测三点,则可计算出孔轴线对端面的位置度误差。由此可见,CMM的这一工作原理使得其具有很大的通用性与柔性。从原理上说,它可以测量任何工件的任何几何元素的任何参数21ZYX3OIAOI图1-1-1 三坐标测量机原理图2、 长度测量示值误差、空间探测误差检测原理长度测量示值误差和空间探测误差的组合可以作为评价坐标测量机性能和精度的指标。长度测量示值误差是使用坐标测量机测量长度实物标准器上两点距离的指示值与真值的差,主要反映了坐标测量机的机构误差;探测误差是使用坐标测量机测量标准球半径的示值变化范围而确定的误差,主要反映了测头的各向异性、瞄准误差和作用直径的影响,提供

    12、了坐标测量机的方向特性参数。探测误差是影响测量不确定度的重要因素,对于不同的测头,探测误差也不同。空间探测误差的检测原理如下:选用一个球度误差很小的标准球,在不同的截面上测量标准球半球上25个点,用全部25个点计算出最小二乘球的中心,并分别计算出25个点对该球心的径向距离r,r的最大值和最小值的差即为探测误差。检测时要求各个截面上的探测点彼此错开,让测头从不同方向探测。根据坐标测量机校准规范,标准球必须是经校准的标准球,直径在1050 mm之间,其形状误差应优于被测坐标测量机最大允许探测误差的五分之一。第二章 三坐标测量机的组成、结构、分类一、三坐标测量机的组成三坐标测量机是典型的机电一体化设

    13、备,它由机械系统和电子系统两大部分组成。 1、机械系统(主机):一般由三个正交的直线运动轴构成。如图1-2-1所示结构中,X向导轨系统装在工作台上,移动桥架横梁是Y向导轨系统,Z向导轨系统装在中央滑架内。三个方向轴上均装有光栅尺用以度量各轴位移值。人工驱动的手轮及机动、数控驱动的电机一般都在各轴附近。用来触测被检测零件表面的测头装在Z轴端部(测头)。2、电子系统(控制系统):一般由光栅计数系统、测头信号接口和计算机等组成,用于获得被测坐标点数据,并对数据进行处理。图1-2-1 三坐标测量机的组成1工作台 2移动桥架 3中央滑架 4Z轴 5测头 6电子系统二、三坐标测量机的机械结构按照机械结构分

    14、类,测量机的主要结构形式可分为:1、移动桥式:移动桥式是当前三坐标测量机的主流结构。有沿着相互正交的导轨而运行的三个组成部分,装有探测系统的第一部分装在第二部分上,并相对其作垂直运动,第一和第二部分的总成相对第三部分作水平运动,第三部分被架在机座的对应两侧的支柱支承上,并相对机座作水平运动,机座承载工件。移动桥式坐标测量机是目前中小型测量机的主要结构型式,承载能力较大,本身具有台面,受地基影响相对较小,开敞性好,精密比固定桥式稍低。优点:(1)结构简单,结构刚性好,承重能力大;(2)工件重量对测量机的动态性能没有影响。缺点:(1)X向的驱动在一侧进行,单边驱动,扭摆大,容易产生扭摆误差;(2)

    15、光栅是偏置在工作台一边的,产生的阿贝臂误差较大,对测量机的精度有一定影响;(3)测量空间受框架影响。图1-2-2 移动桥式坐标测量机2、固定桥式:这类测量机有沿着相互正交的导轨而运动的三个组成部分,装有探测系统的第一部分装在第二部分上并相对其作垂直运动,第一和第二部分的总成沿着牢固装在机座两侧的桥架上端作水平运动,在第三部分上安装工件。高精度测量机通常采用固定桥式结构,经过改进这类测量机速度可达400mm/S,加速度达到3000mm/S2,承重达2000KG,典型的固定桥式有目前世界上精度最好的出自德国LEITZ公司的PMM-C测量机。图1-2-3 PMM-C固定桥式测量机优点:(1)结构稳定

    16、,整机刚性强,中央驱动,偏摆小;(2)光栅在工作台的中央,阿贝误差小;(3)X、Y方向运动相互独立,相互影响小。缺点:(1)被测量对象由于放置在移动工作台上,降低了机动的移动速度,承载能力较小;(2)基座长度大于2倍的量程,所以占据空间较大;(3)操作空间不如移动桥式开阔。3、固定工作台悬臂式:这类坐标测量机有沿着相互正交的导轨而运动的三个组成部分,装有探测系统的第一部分装在第二部分上并相对第三部分作水平运动,第三部分以悬臂状被支撑在一端,并相对机座作水平运动,机座承载工件。优点:(1)结构简单,测量空间开阔。缺点:(1)悬臂沿Y向运动时受力点的位置随时变化,从而产生不同的变形,造成测量的误差

    17、较大,因此,悬臂式测量机只能用于精度要求不太高的测量中,一般用于小型测量机。图1-2-4 固定工作台悬臂式坐标测量机4、龙门式:(高架桥式测量机)这类测量机有沿着相互正交的导轨而运动的三个组成部分,装有探测系统的第一部分装在第二部分上并相对其作垂直运动,第三部分在机座两侧的导轨上作水平运动,机座或地面承载工件。龙门式坐标测量机一般为大中型测量机,要求较好的地基,立柱影响操作的开阔性,但减少了移动部分重量,有利于精度及动态性能的提高,正因为此,近来亦发展了一些小型带工作台的龙门式测量机,龙门式测量机最长可到数十米,由于其刚性要比水平臂好,因而对大尺寸而言可具有足够的精度。典型的龙门式测量机如来自

    18、意大利DEA公司的ALPHA及DELTA和LAMBA系列测量机。图1-2-5 龙门式坐标测量机优点:(1)结构稳定,刚性好,测量范围较大;(2)装卸工件时,龙门可移到一端,操作方便,承载能力强。缺点:(2)因驱动和光栅尺集中在一侧,造成的阿贝误差较大,驱动不够平稳。5、L型桥式:这类坐标测量机有沿着相互正交的导轨而运动的三个组成部分,装有探测系统的第一部分,装在第二部分上并相对其作垂直运动,第一和第二部分的总成相对第三部分作水平运动,第三部分在机座平面或低于平面上的一条导轨和在机座上另一条导轨的两条导轨上作水平运动,机座承载工件。L型桥式坐标测量机是综合移动桥式和龙门式测量机优缺点的测量机,有

    19、移动桥式的平台,工作开敞性较好,又像龙门式减少移动的重量,运动速度、加速度可以较大,但要注意辅腿的设计。图1-2-6 L型桥式坐标测量机6、移动工作台悬臂式:这类坐标测量机有沿着相互正交的导轨而运动的三个组成部分,装有探测系统的第一部分装在第二部分上并相对其作垂直运动。第三部分以悬臂被支承在一端,并相对机座作水平运动。第三部分相对机座作水平运动并在其上安装工件。此类测量机载力不高,应用较少。图1-2-7 移动工作台悬臂式坐标测量机模型7、水平悬臂式:这类坐标测量机有沿着相互正交的导轨而运动的三个组成部分,装有探测系统的第一部分装在第二部分上并相对其作水平运动。第一和第二部分的总成相对第三部分作

    20、垂直运动。第三部分相对机座作水平运动,并在机座上安装工件。如果进行细分,可以为水平悬臂移动式坐标测量机,固定工作台水平悬臂式坐标测量机,移动工作台水平悬臂坐标测量机。水平臂测量机在X方向很长,Z向较高,整机开敞性比较好,是测量汽车各种分总成、车身时最常用的测量机。图1-2-8 水平悬臂式坐标测量机8、柱式:这类坐标测量机有两个可移动组成部分,装有探测系统的第一部分相对机座作垂直运动。第二部分装在机座上并相对其沿水平方向运动,在该部分上安装工件。柱式坐标测量机精度比固定工作台悬臂测量机为高,一般只用于小型高精度测量机,适于要求前方开阔的工作环境。 图1-2-9 柱式坐标测量机模型三、三坐标测量机

    21、按驱动方式分类1、手动型由操作员手工使其三轴运动来实现采点,其结构简单,无电机驱动,价格低廉。缺点是测量精度在一定程度上受人的操作影响,多用于小尺寸或测量精度不很高的零件检测;2、机动型与手动型相似,只是运动采点通过电机驱动来实现,这种测量机不能实现编程自动测量; 3、自动型也称CNC型,由计算机控制测量机自动采点(当然也可实现上述两种一样的操作),通过编程实现零件自动测量,且精度高。注释:阿贝误差是由于测量中不遵守阿贝原则而引起的。阿贝原则是指在设计计量仪器或测量工件时,应该将被测长度与仪器的基准长度安置在同一条直线上。 阿贝原则 它是德国的阿贝在19世纪60年代提出的。他认为,在长度测量中

    22、,被测长度应位于线纹尺刻度中心线的延长线上。按此原则设计的测量工具,由导轨直线度误差引起的测量误差是二阶误差,即阿贝误差,一般可以忽略不计,这样就可以获得精确的测量结果。第三章 三坐标测量机的测量系统三坐标测量机的测量系统由标尺系统和测头系统构成,它们是三坐标测量机的关键组成部分,决定着CMM测量精度的高低。一、标尺系统标尺系统是用来度量各轴的坐标数值的,目前三坐标测量机上使用的标尺系统种类很多,它们与在各种机床和仪器上使用的标尺系统大致相同,按其性质可以分为机械式标尺系统(如精密丝杠加微分鼓轮,精密齿条及齿轮,滚动直尺)、光学式标尺系统(如光学读数刻线尺,光学编码器,光栅,激光干涉仪)和电气

    23、式标尺系统(如感应同步器,磁栅)。根据对国内外生产CMM所使用的标尺系统的统计分析可知,使用最多的是光栅,其次是感应同步器和光学编码器。有些高精度CMM的标尺系统采用了激光干涉仪。现就光栅尺在三坐标应用进行简要的介绍。光栅尺在三坐标测量机里面的作用是对刀具和工件的坐标起一个检测的作用,在数控机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补偿作用。其实就象人眼睛看到我切割偏没偏的作用。然后可以给手起到一个是否要调整我是否要改变用力的标准.光栅尺主要安装在移动三轴上面,起到一直刻度度量的作用.其是在光栅尺之中,位移传感器起到的作用是最大的。下面我们来论述一下位移传感器的安装方法

    24、与基本原理。1、位移传感器基本原理光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90的正弦波或方波,送入光栅数显表计数显示。2、位移传感器安装方式光栅线位移传感器的安装比较灵活,可安装在机床的不同部位。一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削

    25、液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。2.1、位移传感器安装基面安装光栅线位移传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上,用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。基座要求做到

    26、:(1)应加一根与光栅尺尺身长度相等的基座(最好基座长出光栅尺50mm左右)。(2)该基座通过铣、磨工序加工,保证其平面平行度0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于0.2mm.安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为11.5mm左右。2.2、位移传感器主尺安装将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行

    27、度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。在安装光栅主尺时,应注意如下三点:(1)在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。(2)在有基座情况下安装好后,最好用一个卡子卡住尺身中点(或几点)。(3)不能安装卡子时,最好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。 2.3、位移传感器读数头的安装在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似.最后调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在11.5mm以内。 2.4、位移传感器限位装置光栅线位移

    28、传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。2.5、位移传感器检查光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。通过以上工作,光栅传感器的安装就完成了,但对于一般的机床加工环境来讲

    29、,铁屑、切削液及油污较多,因此,光栅传感器应附带加装护罩,护罩的设计是按照光栅传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。3、位移传感器使用注意事项 (1)光栅传感器与数显表插头座插拔时应关闭电源后进行。 (2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅传感器壳体内部。 (3)定期检查各安装联接螺钉是否松动。 (4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。 (5)为保证光栅传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃

    30、光栅尺面清洁。 (6)光栅传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅传感器即失效了。 (7)不要自行拆开光栅传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 (8)应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 (9)光栅传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。二、测头系统1、三坐标测头概述三坐标测头是探测系统最重要的一部分,可以说,三坐标测头与三坐标测量机的关系将会是有很大的

    31、关系,其中精度、探测速度都与测头有着紧密的关系,测头是精密量仪的关键部件之一,作为传感器提供被测工件的几何(坐标)信息,其发展水平直接影响着精密量仪的测量精度、工作性能、使用效率和柔性程度。坐标测量机是一种典型的精密量仪,其发展历史也表明,只有在精密测头为坐标测量机提供新的触测原理、新的测量精度后,三坐标测量机才能发生一次根本的变化。换言之,精密测头是限制精密量仪精度和速度的主要因素,精密量仪能否满足现代测量要求也依赖于精密测头系统的不断创新与发展。2.精密测头的演变精密测头的发展有悠久的历史,最早可追溯到上世纪20年代电感测微仪的出现;但真正快速发展却得益于上世纪50年代末三坐标测量机的出现。迄今,精密测头通常分为接触式测头与非接触式测头两种,其中接触式测头又分为机械式测头、触发式测头和扫描式测头;非接触式测头分为激光测头和光学视频测头。2.1、机械接触式测头机械式测头又称接触式硬测头,是精密量仪使用较早的一种测头。通过测头测端与被测工件直接接触进行定位瞄准而完成测量,主要用于手动测量。根据其触测部位的形状,可以分为圆锥形测头、圆柱形测头、球形测头、半圆形测头、点测头、V型块测头等(如图1-3-1所示)。这类测头的形状简单,制造容易,但是测量力的大小取决于操作者的经验和技能,因此测量精度差、效率低。目前除少数


    注意事项

    本文(第一章 三坐标测量机的概述.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开