欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    延时时间计算.docx

    • 资源ID:16219234       资源大小:53.18KB        全文页数:13页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    延时时间计算.docx

    1、延时时间计算单片机C51延时时间怎样计算?日期:2010-04-28 来源:本站原创 作者:admin 字体:大 中 小 (投递新闻) C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。 以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。 一. 500ms延时子程序 程序: void delay500ms(void) unsigned char i,j,k; for(i=15;i0;i-) for(j=202;j0;j-) for(

    2、k=81;k0;k-); 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us 循环外: 5us 子程序调用 2us + 子程序返回 2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=(2*R5+3

    3、)*R6+3*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) unsigned char i,j,k; for(i=5;i0;i-) for(j=132;j0;j-) for(k=150;k0;k-); 三. 10ms延时子程序 程序: void delay10ms(void) unsigned char i,j,k; for(i=5;i0;i-) for(j=4;j0;j-) for(k=248;k0;k-); 四. 1s延时子程序 程序: void delay1s(void) unsigned char h,i,j,k; for(h=5;h0;h-

    4、) for(i=4;i0;i-) for(j=116;j0;j-) for(k=214;k0;k-); 参考链接:keilc51程序设计中几种精确延时及延时的计算、确定软件用法(如protues、keil、Word) 2009-09-08 12:04:54 阅读340 评论0 字号:大中小 摘要 实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。本文从实际应用出发,讨论几种实用的编制精确延时程序和计算程序执行时间的方法,并给出各种方法使用的详细步骤,以便读者能够很好地掌握理解。

    5、 引言 单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域1。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内2,否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧3。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。 实现延时通常有两种方法:一种是硬件延

    6、时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216(2的16次方,因为TH1,TH0共为16位)=65 536 s。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际

    7、应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使

    8、用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 s的延时函数可编写如下: Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 s。主函数调用Delay10us( )时,先执行一个LCALL指令(2 s),然后执行6个_NOP_( )语句(6 s),最后执行了一个RET指令(2 s),所以执行上述函数时共需要10 s。可以把这一函数当作基本延时函数,在其他函数中调用,即嵌套调用4,以实现较长时间的延时;但需

    9、要注意,如在Delay40us( )中直接调用4次Delay10us( )函数,得到的延时时间将是42 s,而不是40 s。这是因为执行Delay40us( )时,先执行了一次LCALL指令(2 s),然后开始执行第一个Delay10us( ),执行完最后一个Delay10us( )时,直接返回到主程序【因为最后一个(其实每一个都有)Delay10us( )中最后已有RET指令,不需要在Delay40us( )函数中最后再执行RET指令,省去了2vs】。依此类推,如果是两层嵌套调用,如在Delay80us( )中两次调用Delay40us( ),则也要先执行一次LCALL指令(2 s),然后执

    10、行两次Delay40us( )函数(84 s),所以,实际延时时间为86 s。简言之,只有最内层的函数执行RET指令。该指令直接返回到上级函数或主函数。如在Delay80s( )中直接调用8次Delay10us( ),此时的延时时间为82 s。通过修改基本延时函数和适当的组合调用,上述方法可以实现不同时间的延时。2.2 在C51中嵌套汇编程序段实现延时 在C51中通过预处理指令#pragma asm和#pragma endasm可以嵌套汇编语言语句。用户编写的汇编语言紧跟在#pragma asm之后,在#pragma endasm之前结束。 如:#pragma asm 汇编语言程序段 #pra

    11、gma endasm 延时函数可设置入口参数,可将参数定义为unsigned char、int或long型。根据参数与返回值的传递规则,这时参数和函数返回值位于R7、R7R6、R7R6R5中。在应用时应注意以下几点: #pragma asm、#pragma endasm不允许嵌套使用; 在程序的开头应加上预处理指令#pragma asm,在该指令之前只能有注释或其他预处理指令; 当使用asm语句时,编译系统并不输出目标模块,而只输出汇编源文件; asm只能用小写字母,如果把asm写成大写,编译系统就把它作为普通变量; #pragma asm、#pragma endasm和 asm只能在函数内使

    12、用。 将汇编语言与C51结合起来,充分发挥各自的优势,无疑是单片机开发人员的最佳选择。 2.3 使用示波器确定延时时间 熟悉硬件的开发人员,也可以利用示波器来测定延时程序执行时间。方法如下:编写一个实现延时的函数,在该函数的开始置某个I/O口线如P1.0为高电平,在函数的最后清P1.0为低电平。在主程序中循环调用该延时函数,通过示波器测量P1.0引脚上的高电平时间即可确定延时函数的执行时间。方法如下: 把P1.0接入示波器,运行上面的程序,可以看到P1.0输出的波形为周期是3 ms的方波。其中,高电平为2 ms,低电平为1 ms,即for循环结构“for(j=0;j124;j+) ;”的执行时

    13、间为1 ms。通过改变循环次数,可得到不同时间的延时。当然,也可以不用for循环而用别的语句实现延时。这里讨论的只是确定延时的方法。 2.4 使用反汇编工具计算延时时间 对于不熟悉示波器的开发人员可用Keil C51中的反汇编工具计算延时时间,在反汇编窗口中可用源程序和汇编程序的混合代码或汇编代码显示目标应用程序。为了说明这种方法,还使用“for(j=0;j124;j+) ;”。在程序中加入这一循环结构,首先选择build taget,然后单击start/stop debug session按钮进入程序调试窗口,最后打开Disassembly window,找出与这部分循环结构相对应的汇编代码

    14、,具体如下: 可以看出,0x000F0x0017一共8条语句,分析语句可以发现并不是每条语句都执行DlyT次。核心循环只有0x00110x0017共6条语句,总共8个机器周期,第1次循环先执行“CLR A”和“MOV R6,A”两条语句,需要2个机器周期,每循环1次需要8个机器周期,但最后1次循环需要5个机器周期。DlyT次核心循环语句消耗(2+DlyT8+5)个机器周期,当系统采用12 MHz时,精度为7 s。 当采用while (DlyT-)循环体时,DlyT的值存放在R7中。相对应的汇编代码如下: 循环语句执行的时间为(DlyT+1)5个机器周期,即这种循环结构的延时精度为5 s。 通过

    15、实验发现,如将while (DlyT-)改为while (-DlyT),经过反汇编后得到如下代码: C:0x0014DFFE DJNZR7,C:0014/2T 可以看出,这时代码只有1句,共占用2个机器周期,精度达到2 s,循环体耗时DlyT2个机器周期;但这时应该注意,DlyT初始值不能为0。 这3种循环结构的延时与循环次数的关系如表1所列。 表1 循环次数与延时时间关系单位:s 注意:计算时间时还应加上函数调用和函数返回各2个机器周期时间。 2.5 使用性能分析器计算延时时间 很多C程序员可能对汇编语言不太熟悉,特别是每个指令执行的时间是很难记忆的,因此,再给出一种使用Keil C51的性

    16、能分析器计算延时时间的方法。这里还以前面介绍的for (i=0;i0;m-) for(n=20;n0;n-) for(s=248;s0;s-); 经常看到这样的程序,但不知道到底这时间是多长,只能大概的指导各时间长短,大家可以教教我吗?wang1jin (2009-5-30 22:43:44)void delay2(unsigned char i) while(-i); 为最佳方法。分析:假设外挂12M(之后都是在这基础上讨论)我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay2(0):延时518us 518-2*256=6delay2(1):延时7us(原帖写“5us”

    17、是错的,_)delay2(10):延时25us 25-20=5delay2(20):延时45us 45-40=5delay2(100):延时205us 205-200=5delay2(200):延时405us 405-400=5见上可得可调度为2us,而最大误差为6us。精度是很高了!但这个程序的最大延时是为518us 显然不能满足实际需要,因为很多时候需要延迟比较长的时间。那么,接下来讨论将t分配为两个字节,即uint型的时候,会出现什么情况。void delay8(uint t)while(-t);我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay8(0):延时524

    18、551us 524551-8*65536=263delay8(1):延时15usdelay8(10):延时85us 85-80=5delay8(100):延时806us 806-800=6delay8(1000):延时8009us 8009-8000=9delay8(10000):延时80045us 80045-8000=45delay8(65535):延时524542us 524542-524280=262如果把这个程序的可调度看为8us,那么最大误差为263us,但这个延时程序还是不能满足要求的,因为延时最大为524.551ms。那么用ulong t呢?一定很恐怖,不用看编译后的汇编代码了

    19、。那么如何得到比较小的可调度,可调范围大,并占用比较少得RAM呢?请看下面的程序:/*-程序名称:50us 延时注意事项:基于1MIPS,AT89系列对应12M晶振,W77、W78系列对应3M晶振例子提示:调用delay_50us(20),得到1ms延时全局变量:无返回: 无-*/void delay_50us(uint t)uchar j;for(;t0;t-) for(j=19;j0;j-) ;我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay_50us(1):延时63us 63-50=13delay_50us(10):延时513us 503-500=13delay_

    20、50us(100):延时5013us 5013-5000=13delay_50us(1000):延时50022us 50022-50000=22赫赫,延时50ms,误差仅仅22us,作为C语言已经是可以接受了。再说要求再精确的话,就算是用汇编也得改用定时器了。/*-程序名称:50ms 延时注意事项:基于1MIPS,AT89系列对应12M晶振,W77、W78系列对应3M晶振例子提示:调用delay_50ms(20),得到1s延时全局变量:无返回: 无-*/void delay_50ms(uint t)uint j; /*可以在此加少许延时补偿,以祢补大数值传递时(如delay_50ms(1000

    21、))造成的误差,但付出的代价是造成传递小数值(delay_50ms(1))造成更大的误差。因为实际应用更多时候是传递小数值,所以补建议加补偿!*/for(;t0;t-) for(j=6245;j0;j-) ;我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:delay_50ms(1):延时50 010 10usdelay_50ms(10):延时499 983 17usdelay_50ms(100):延时4 999 713 287usdelay_50ms(1000):延时4 997 022 2.978ms赫赫,延时50s,误差仅仅2.978ms,可以接受!上面程序没有才用long,也没采用3层以上的循环,而是将延时分拆为两个程序以提高精度。应该是比较好的做法了。


    注意事项

    本文(延时时间计算.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开