欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    常用运放电路及其各类比较器电路.docx

    • 资源ID:15499566       资源大小:334.61KB        全文页数:12页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    常用运放电路及其各类比较器电路.docx

    1、常用运放电路及其各类比较器电路发喜,制作同相放大电路:运算放大器的同相输入端加输入信号,反向输入端加来自输出的负反响信号,如此为同相放大器。ZLH838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸图是同相放大器电路图。ZLH838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸因为e1=e2,所以输入电流极小,输入阻抗极高。ZLH838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸如果运算放大器的输入偏置电流,如此ZLH838电

    2、子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸e1=e2放大倍数:原理图:反相比例运算放大电路图:1号图:2号图:反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反响电阻Rf反响到运放的反相输入端,构成电压并联负反响放大电路。R 为平衡电阻应满足R = R1/Rf。利用虚短和虚断的概念进展分析,vI=0,vN=0,iI=0,如此 即 该电路实现反相比例运算。反相放大电路有如下特点1运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。2vN= vP,而vP=0,反相端N

    3、没有真正接地,故称虚地点。3电路在深度负反响条件下,电路的输入电阻为R1,输出电阻近似为零。运算放大器减法电路原理:图为运放减法电路4y6838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸由e1输入的信号,放大倍数为R3/R1,并与输出端e0相位相反,所以4y6838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸4y6838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸由e2输入的信号,放大倍数为 4y6838电子-技术资料-

    4、电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 与输出端e0相位相,所以4y6838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸4y6838电子-技术资料-电子元件-电路图-技术应用-根本知识-原理-维修-作用-参数-电子元器件符号-各种图纸当R1=R2=R3=R4时 e0=e2-e1加法运算放大器电路:加法运算放大器电路包含有反相加法电路和同相加法电路.同相加法电路:由LF155组成。三个输入信号同时加到运放同相端,其输入输出电压关系式:反相加法电路:由运算放大器lm741组成。lm741中文资

    5、料反相加法运算电路为假设干个输入信号从集成运放的反相输入端引入,输出信号为它们反相按比例放大的代数和。电压比拟器:图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反响电阻,假设不考虑输入失调电压,如此其输出电压Vout与VA、VB与4个电阻的关系式为:Vout=(1+RF/R1)R3/(R2+R3)VA-(RF/R1)VB。假设R1=R2,R3=RF,如此Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=(相当于R3、RF开路)时,Vout=。增益

    6、成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比拟器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。 从图4中可以看出,比拟器电路就是一个运算放大器电路处于开环状态的差分放大器电路。 同相放大器电路如图5所示。如果图5中RF=,R1=0时,它就变成与图3(b)一样的比拟器电路了。图5中的Vin相当于图3(b)中的VA。滞回电压比拟器:滞回比拟器又称施密特触发器,迟滞比拟器。这种比拟器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回曲线的形状。滞回比拟器也有反相

    7、输入和同相输入两种方式。UR是某一固定电压,改变UR值能改变阈值与回差大小。以图4(a)所示的反相滞回比拟器为例,计算阈值并画出传输特性仪表放大器电路目前,仪表放大器电路的实现方法主要分为两大类:第一类由分立元件组合而成;另一类由单片集成芯片直接实现。根据现有元器件,分别以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为核心,设计出四种仪表放大器电路方案。 方案1 由3个通用型运放LM741组成三运放仪表放大器电路形式,辅以相关的电阻外围电路,加上A1,A2同相输入端的桥式信号输入电路,如图2所示。图2中的A1A3分别用LM741替换即可。电路的工作原理与典型仪表放大

    8、器电路完全一样。方案2 由3个精细运放OP07组成,电路结构与原理和图2一样用3个OP07分别代替图2中的A1A3。方案3 以一个四运放集成电路LM324为核心实现,如图3所示。它的特点是将4个功能独立的运放集成在同一个集成芯片里,这样可以大大减少各运放由于制造工艺不同带来的器件性能差异;采用统一的电源,有利于电源噪声的降低和电路性能指标的提高,且电路的根本工作原理不变。图4 滞回比拟器与其传输特性 (a)反相输入;(b)同相输入1,正向过程正向过程的阈值为形成电压传输特性的abcd段2,负向过程负向过程的阈值为形成电压传输特性上defa段。由于它与磁滞回线形状相似,故称之为滞回电压比拟器。利

    9、用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比拟器的两个阈值两个阈值的差值UTH=UTH1UTH2称为回差。由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。即滞回比拟器的传输特性将平行右移或左移,滞回曲线宽度不变。 图5 比拟器的波形变换 (a)输入波形;(b)输出波形例如,滞回比拟器的传输特性和输入电压的波形如图6(a)、(b)所示。根据传输特性和两个阈值(UTH12V, UTH2=2V),可画出输出电压uo的波形,如图6(c)所示。从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。但回差也导致了输出电压

    10、的滞后现象,使电平鉴别产生误差。 图6 说明滞回比拟器抗干扰能力强的图 (a)传输特性;(b)ui 波形; (c)根据传输特性和ui波形画出的uo波形方案4 由一个单片集成芯片AD620实现,如图4所示。它的特点是电路结构简单:一个AD620,一个增益设置电阻Rg,外加工作电源就可以使电路工作,因此设计效率最高。图4中电路增益计算公式为:G=494K/Rg+1。 实现仪表放大器电路的四种方案中,都采用4个电阻组成电桥电路的形式,将双端差分输入变为单端的信号源输入。性能测试主要是从信号源Vs的最大输入和Vs最小输入、电路的最大增益与共模抑制比几方面进展仿真和实际电路性能测试。测试数据分别见表1和

    11、表2。其中,Vs最大小输入是指在给定测试条件下,使电路输出不失真时的信号源最大小输入;最大增益是指在给定测试条件下,使输出不失真时可以实现的电路最大增益值。共模抑制比由公式KCMRR=20|g | AVd/AVC|dB计算得出。说明:1f为Vs输入信号的频率;2表格中的电压测量数据全部以峰峰值表示;3由于仿真器件原因,实验中用Multisim对方案3的仿真失效,表1中用“-表示失效数据;4表格中的方案14依次分别表示以LM741,OP07,LM324和AD620为核心组成的仪表放大器电路。由表1和表2可见,仿真性能明显优于实际测试性能。这是因为仿真电路的性能根本上是由仿真器件的性能和电路的结构

    12、形式确定的,没有外界干扰因素,为理想条件下的测试;而实际测试电路由于受环境干扰因素如环境温度、空间电磁干扰等、人为操作因素、实际测试仪器准确度、准确度和量程围等的限制,使测试条件不够理想,测量结果具有一定的误差。在实际电路设计过程中,仿真与实际测试各有所长。一般先通过仿真测试,初步确定电路的结构与器件参数,再通过实际电路测试,改良其具体性能指标与参数设置。这样,在保证电路功能、性能的前提下,大大提高电路设计的效率。由表2的实测数据可以看出:方案2在信号输入围即Vs的最大、最小输入、电路增益、共模抑制比等方面的性能表现为最优。在价格方面,它比方案1和方案3的本钱高一点,但比方案4廉价很多。因此,

    13、在四种方案中,方案2的性价比最高。方案4除最大增益相对小点,其他性能仅次于方案2,具有电路简单,性能优越,节省设计空间等优点。本钱高是方案4的最大缺点。方案1和方案3在性能上的差异不大,方案3略优于方案1,且它们同时具有绝对的价格优势,但性能上不如方案2和方案4好。综合以上分析,方案2和方案4适用于对仪表放大器电路有较高性能要求的场合,方案2性价比最高,方案4简单、高效,但本钱高。方案1和方案3适用于性能要求不高且需要节约本钱的场合。针对具体的电路设计要求,选取不同的方案,以达到最优的资源利用。电路的设计方案确定以后,在具体的电路设计过程中,要注意以下几个方面:1注意关键元器件的选取,比如对图

    14、2所示电路,要注意使运放A1,A2的特性尽可能一致;选用电阻时,应该使用低温度系数的电阻,以获得尽可能低的漂移;对R3,R4,R5和R6的选择应尽可能匹配。2要注意在电路中增加各种抗干扰措施,比如在电源的引入端增加电源退耦电容,在信号输入端增加RC低通滤波或在运放A1,A2的反响回路增加高频消噪电容,在PCB设计中精心布局合理布线,正确处理地线等,以提高电路的抗干扰能力,最大限度地发挥电路的性能。仪表放大器的特点: 高共模抑制比共模抑制比CMRR 如此是差模增益 A d 与共模增益 Ac 之比,即:CMRR = 20lg | Ad/ Ac | dB ;仪表放大器具有很高的共模抑制比,CMRR

    15、典型值为 70100 dB 以上。 高输入阻抗要求仪表放大器必须具有极高的输入阻抗,仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡,其典型值为 1091012。 低噪声由于仪表放大器必须能够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在 1 kHz 条件下,折合到输入端的输入噪声要求小于 10 nV/ Hz. 低线性误差输入失调和比例系数误差能通过外部的调整来修正,但是线性误差是器件固有缺陷,它不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为 0. 01 % ,有的甚至低于 0. 0001 %. 低失调电压和失调电压漂移仪表放大器的失调漂移也由输入和输

    16、出两局部组成,输入和输出失调电压典型值分别为 100V 和2 mV. 低输入偏置电流和失调电流误差双极型输入运算放大器的基极电流,FET 型输入运算放大器的栅极电流,这个偏置电流流过不平衡的信号源电阻将产生一个失调误差。双极型输入仪表放大器的偏置电流典型值为 1 nA50 pA ;而 FET 输入的仪表放大器在常温下的偏置电流典型值为 50 pA. 充裕的带宽仪表放大器为特定的应用提供了足够的带宽,典型的单位增益小信号带宽在 500 kHz4 MHz 之间。 具有“检测端和“参考端仪表放大器的独特之处还在于带有“检测端和“参考端,允许远距离检测输出电压而部电阻压降和地线压降 IR 的影响可减至最小。


    注意事项

    本文(常用运放电路及其各类比较器电路.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开