欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    空间面板随机前沿模型及技术效率估计.docx

    • 资源ID:15058705       资源大小:26.47KB        全文页数:8页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    空间面板随机前沿模型及技术效率估计.docx

    1、空间面板随机前沿模型及技术效率估计空间面板随机前沿模型及技术效率估计空间面板随机前沿模型及技术效率估计 林佳显 , 龙志和 , 林光平 1 1 2( 1. 华南理工大学 经济与贸易学院 , 广东 广州 510006; 摘 要 : 随机前沿模型是测算技术效率的重要方法之一 。通常 ,模型假设生产单元之间彼此 独立 ,然而在技术扩散过程中 ,空间外部性起着重要作用 。文章结合随机前沿模型理论与空间经 济计量分析方法 ,构建空间面板随机前沿模型 ,同时考虑空间滞后因变量和空间误差自相关 ,并 逐步放松模型设定条件 ,首先考虑技术效率时变 ,接着引入技术无效率项的异方差性 ,之后考虑 观察数据中潜在的

    2、截面异质性 ,分别以引入随机截面特有项和设定随机系数的形式来表示截面 中图分类号 : F064. 1 文献标识码 : A 文章编号 : 1000 22154 ( 2010 ) 05 20071 208 一 、引 言 随机前沿模型 ( SFM ) 的理论最初 A igne r、Love ll和 Schm id t (AL S) ( 1977 ) 2 1 , M eeu sen 和 V an den B roeck (MB ) ( 1977 ) 提出 ,并很快成为计量经济学中一个引人注目的分支 ,被广泛应用于效率测算和生 3 产率分析 ,尤其是在 Jond row等 ( JLM S) ( 1982

    3、 ) 指出各个生产单元的技术无效率可以通过条件分布 u |i vi- ui 的期望 E ui | vi- ui 或模 M ode ui | vi- ui 来估算以后 。随机前沿分析 ( SFA ) 始于对生产最优 化的研究 , 经过 30多年的发展 , 其在理论研究与实践应用方面都得到了深入的发展 , 已被尝试性地应用于 生产经济学以外的领域 , 如劳动经济学 、公共经济学以及金融经济学等 。 SFM 假定 , 生产单位于各种组织 、管理及制度等非价格性因素导致生产过程中效率的损耗 , 而达不 到最佳的前沿技术水平 。SFM 的基本模型表述如下 : Yi= f ( Xi ;) exp ( vi

    4、- ui ) 4 i = 1, 2, ?, N ( 1 ) T Ei= exp ( - ui ) ( 2 ) 其中 : Yi 代表第 i个生产单位的产出 ; Xi 代表第 i个生产单位的 k 1维投入向量 ; f ( Xi ;) exp ( vi ) 是随机 生产前沿 ;为待估计的参数向量 ; T Ei= exp ( - ui ) 表示技术效率 ; vi 是随机干扰项 。 通常 , SFM 假设 vi 、ui 都是独立同分布的 ,然而 ,空间和区域经济学的研究都指出 ,地理接近性是产生 外部性和一系列相邻效应的关键因素 。在技术扩散过程中 ,空间外部性起着重要作用 ,生产单元彼此独立 的假设存

    5、在着很大漏洞 。胡晶 、魏传华和吴喜之 ( 2007 )提到 ,“任何一个地区的经济都不可能独立存在 ,它 收稿日期 : 2009 - 03 - 08 ( 08JA790045 ) 基金项目 : 教育部人文社会科学研究规划基金项目“面板数据随机前沿模型的空间计量经济分析 ”作者简介 : 林佳显 ( 1983 - ) ,男 ,广东陆丰人 ,华南理工大学经济与贸易学院博士研究生 ,主要从事随机前沿分析和空 间经济计量的研究 ;龙志和 ( 1954 - ) ,男 ,湖南安化人 ,华南理工大学经济与贸易学院教授 ,博士生导师 ,主要从事空间经济 计量理论和实证的研究 ;林光平 ( 1948 - ) ,

    6、男 ,美籍华人 ,美国波特兰州立大学经济系教授 ,主要从事空间经济计量学 、数理 经济学 、计算经济学等研究 。 总是与其他经济区域间存在着各种各样的联系 。当某外生干扰对一个地区的经济造成冲击时 ,其产生的影 5 响往往会向外扩散 ,波及临近地区甚至更远的区域 。”如果生产单元间存在空间相互作用 , SFM 中没引 入空间计量分析可能会导致模型设定偏误 。 因此 ,本研究认为有必要把空间效应引入 SFM 分析框架中 ,将一般 SFM 扩展到空间 SFM ,避免于 忽略空间效应所产生的模型估计偏误等问题 ,从而能更加客观地评估生产单元的效率 ,且进一步有助于开 展以效率测算为基础的后续相关研究

    7、 (如全要素生产率增长的研究等 ) 。 当前文献上 , SFM 中引入空间因素的计量分析鲜见 。D ru ska和 Ho rrace ( 2004 )提出空间误差自相关固 定效应面板模型的 GMM 估计 ,随之将其引入 SFA 框架中 ,并对印度尼西亚的米业农场进行实证分析 ,结 果发现空间相关性确实影响农场效率的估计和排名 6 ; Iglio ri ( 2005 ) 测算巴西亚马逊区域各市农业和牧 7 业的技术效率 ,并将空间计量分析引入技术效率外生决定因素的研究中 的重要性 8 ; Schm id t等 ( 2009 )分析巴西中 西部地区 370个市区农场的生产率 ,将潜在的空间结构引入

    8、 SFM 的单边误差项中 ,研究结果支持空间效应 ;胡晶 、魏传华和吴喜之 ( 2007 )构建了基于横截面数据的空间误差自相关 SFM ,并采用极大似 然方法对模型参数进行估计 。 综合目前国内外关于 SFM 空间计量分析的研究情况 ,尚存在以下不足 : ( 1 ) 已有的空间 SFM 仅考虑 空间误差自相关 ,缺乏对空间滞后模型的研究 ; ( 2 ) 已有的面板模型仅采用 GMM 估计方法研究固定效应 的情形 ,未见涉及随机效应模型和极大似然法 (ML )的研究 ; ( 3 ) 当面板的时间维度 T较大时 ,技术效率非 时变 ( tim e2inva rian t)的假设显得与实际不符 ;

    9、 ( 4 ) 当技术无效率项存在异方差性时 ,其同方差的设定会使 模型参数估计有偏 ,导致技术效率测算不可靠 ; ( 5 ) 如果观察数据中存在非时变的潜在截面异质性 ( la ten t c ro ss un it he te rogene ity)与技术效率不相关 ,忽略截面异质性的模型设定就会将这部分异质引入技术无效 率项的估计值中 ,此得出的技术效率测算有偏 。 有鉴于此 ,作者在已有研究的基础上 ,进一步将空间效应引入 SFM 分析框架中 ,完善空间面板 SFM 的理论基础 ,同时考虑空间滞后因变量和空间误差自相关 ,并逐步放松模型设定条件 ,建立若干不同形式 的空间面板 SFM。首

    10、先考虑技术效率时变 ,接着引入技术无效率项的异方差性 ,之后考虑观察数据中潜在 的截面异质性 ,分别以引入随机截面特有项 ( random firm sp ec ific te rm )和设定随机系数的形式来表示截面 异质性 。针对各种模型设定形式提出相应的参数估计方法 ,最后给出各种模型相应技术效率的估计 。 二 、空间面板随机前沿模型及其估计 (一 ) 基本模型及其 M L 估计 在 SFM 中 ,与横截 面 数 据 相 比 较 , 面 板 数 据 更 能 提 供 生 产 单 元 技 术 效 率 可 靠 的 估 算 。P itt 和 L ee ( 1981 ) 9 , Schm id t和

    11、 Sick le s ( 1984 ) 10 将横截面 SFM 扩展到面板 SFM。早期的面板模型都基于技术效率 非时变的假设 ,当面板的时间维度 T较大时 ,这一假设显得与实际不符 。随后 , Co rnwe ll、Schm id t和 Sick le s ( 1990 ) , Kum bhaka r ( 1990 ) , L ee 和 Schm id t ( 1993 ) , B a tte se 和 Coe lli ( 1995 ) , L ee ( 2006 ) , A hn、L ee 和 这些有关技术效率时变的假设都遵从一个严格的函数结构 ,如 L ee和 Schm id t ( 1

    12、993 )建议 uit = ( t) ui , 其 中 ( t) = 虚 拟 变 量 ; Kum bhaka r ( 1990 ) 提 出 ( t) t dt , dt 是 t = 1 + exp (tte se 和 1 t +2 t ) ; B a 2 - 1 Coe lli ( 1995 ) 建议 ( t) = exp - ( t - T ) 。 胡晶 、魏传华和吴喜之 ( 2007 )构建了基于横截面数据的空间误差自相关 SFM ,并采用极大似然方法 对模型参数进行估计 。现在本研究提出以下基于面板数据的空间 SFM ,同时考虑空间滞后因变量和空间 误差自相关 ,并放松了技术效率非时变的

    13、约束 ,且不赋予时变技术效率一定的函数结构 。为了便于描述 , f ( x,) 采取对数线性 Cobb - Dougla s函数形式 : yt= + xt +W 1 yt+ vt- u t vt= W 2 vt+t ( 3 ) ( 4 ) 其中 : yt= y1 t , y2 t , ?, yN t 表示 N 个生产单位在第 t时段 N 1维的产出 (取对数 ) 向量 , xt 是 N 个生产 单位在第 t时段 K 1维投入 (取对数 ) 向量组成的 N K维矩阵 , t = 1, 2, ?, T;为待估计的 K 1维参 数向量 ; = 1, 1, ?, 1 是 N 1维的截距项向量 ; u

    14、t= u1 t , u2 t , ?, uN t 0是 N 1维的技术无 效率项向量 , 代表生产单位在第 t时段的技术无效率程度 ; vt= v1 t , v2 t , ?, vN t 是 N 1维的双边误差项 向量 , 代表不可控的经济系统外部影响因素和数据测度误差等 ;t= 是 N 1维的随机 干扰项向量 ; W 1 、W 1 t ,2 t , ?,N t 2 是空间权重矩阵 , 表示不同生产单位之间的空间相关性 , W 1 yt 为空间滞后因变量 , W 2 vt 为空间滞后误差项 ;是待估计的空间自回归系数 ;是待估计的空间误差自相关系数 。为了进行 ML 估计 , 模型假定 : 2

    15、 + u t iid N ( 0,u I) , E ( u t u ) = 0, t1 t2 ; vt iid N ( 0,v 1 t 2 2 2 W ) ) , = ( I - 2 - 1 ( I - W 2 ) - 1 , it 和 xit 相互之间不相关 。 E ( vt v) = 0, t1 t2 ;it iid N ( 0,v ) , i = 1, 2, ?, N , t = 1, 2, ?, T。另外 , uit 、1 t 2 根据以上的假定 , 可得到如下的分布密度函数 : f ( u t ) = 2 N 2N 2exp - u - 1 / 2 u u t t u 2v t 2(

    16、 5 ) f ( vt ) = 1 21 2v N exp - 2 2 - 1 v t - 1 ( 6 ) v f ( u t , vt ) = - 1 / 2 u v exp - u u tt u 22- v t 2 vt v 2( 7 ) 设 则 ( u t ,t= vt- u t , t ) 的联合分布密度函数为 : f ( u t ,t ) = = 1 N u v 1 N 2 - 1 / 2 uv 2 2 v u 22- 1 / 2 1 - 1 exp- ( u t - ) ( u - t t ) 2 - 1 t exp - u u tt2- ( t + u ) t ( + u t )

    17、 2 - 1 t t 2 exp - 1t 2 u I + 2 v - 1 t ( 8 ) 其中 :t= - u u I +v ( 9 ) 2 2 2 = 2 u I - u (u I +v ) - 1 ( 10 ) 将式 ( 8 ) 对 u t 求积分 , 得到 t 的分布密度函数 : f (t ) = = = 0f ( u ,) du t t t - 1 / 2 1 N uv 2 N | 2 u 2| 2 exp - 1 t 2 - 1 / 2 u I + 2 v - 1 t 0 - 1 exp - 1 ( u - 1 ( u t - ) t 2 1 t - )t du t ( 11 )

    18、2I + v exp - 1 2 2 2 t I +u v - 2 t t ) 是多元标准正态分布函数 , 其中 : ( - 1 / 2 t = - u 2 2 u I +v v - - 1 - 1 / 2 - 1 / 2 t ( 12 ) 基于式 ( 11 ) , 可得到模型的对数似然函数 : ) = N T ln ( 2 ) - ll (,u ,v ,N T 2 ) ln ( 2v T lnu 2 I +v 2 2 - 1 / 2 1 T 2 2- I t +u 2 t = 1 T t+ ln ( t = 1 ) t ( 13 ) FM 框架中显得更加突出 ,尤其是当异方差性存在于单边误差

    19、项 uit中时 。异方差性可以出 现在单边误差项 uit或双边误差项 vit中 ,将之忽略不但会影响生产技术参数和误差项参数的估计推断 ,也 E ( yt ) = ( I - W 1 ) 1 - 1 - 2 uN + ( I - W 1 ) - 1 xt ( 14 ) 其中 :N = 1 ? 1 N 1 , 其它变量 、参数定义参见前文 。 + 2 下面假设技术无效率项 uit 存在异方差 , uit iid N ( 0,u i ) , 观察忽略异方差性所产生的问题 。此时 , 式 ( 14 ) 将变成 : 其中 : ei 是 N 1维向量 , 第 i个分量为 1, 其它分量为 0。 比较式

    20、( 14 ) 和式 ( 15 ) , 忽略 uit 中的异方差性将导致截距项的估计是有偏的 , 而此导致生产技术参 数的估计也是有偏的 。此时 , 技术无效率项 uit 的估计式中 (参见第三部分 ) ,u i 将代替 u 。 i = 1 E ( yt ) = ( I - W 1 ) - 1 N - 2 + ( I - W u i ei 1 ) - 1 xt ( 15 ) 当然 , 正如 Kum bhaka r和 Love ll ( 2000 ) 所说的 , 在仅有横截面数据的情形下 , 估计每个生产单位的 u i 显然不可 能 , 而 当 面 板 数 据 的 截 面 维 N 远 大 于 时

    21、间 维 T 时 ,u i的估 计 也 不 大 可 行 。Kum bhaka r 和 ) 代替 u i , 这样可大大有效减少待估计的参数 , 而又不会 Love ll ( 2000 ) 建议采用相关变量 zi 的函数 g ( zi ;2 22忽略 uit 的异方差性 。 2 2 + ) , 在前文模型假设的基础上 , 考虑技术无效率项 uit 的异方差性 , 令 uit iid N ( 0,u i ) ,u i= g ( zi ;下面给出模型的 ML 估计 。 + ) , u t 于 uit iid N ( 0, g ( zi ;N = u1 t , u2 t , ?, uN t 的分布密度函

    22、数式 ( 5 ) 变为 : = f ( u t ) = i = 12 2 uit exp - ) 2 g ( zi ;g ( zi ;) 22 N N 1 N 2exp - i = 1 N ) g ( z i ; 2 g ( z;) i = 1 uit i 2 ( 16 ) 因此 , u t 与 vt 的联合分布密度函数式 ( 7 ) 变为 : f ( u t , vt ) = 1 N N 1 ) g ( zi ; v i = 1 0 - 1 / 2 exp - i = 1 v v u t t - 2 ) 2 g ( zi ; v 2 2 it - 1 ( 17 ) 1 同样地 , 令 t=

    23、vt - u t , 并且 Q = 2 u1 ? ? exp - 1 ) g ( z 1 ;? ? 0 ? 0 ? = 1 ? 0 ? 1 ) g ( z N ;, 则式 ( 8 ) 变为 : 2 uN N f ( u t ,t ) = 1 N N 1 ) g ( zi ; v i = 1 - 1 / 2 i = 1 2 ( t + u t ) ( t + ui tu )t - 2 ) 2 g ( zi ; v 2 - 1 = 1 N N 1 ) g ( zi ;v i = 1 - 1 / 2 exp- 1 ( u ( u - ) t 2 t t - )t exp - 1 t Q - Q -

    24、1 Q t 2 ( 18 ) 其中 : t = = Q + 2 v Q + - 1 ( 19 ) Q - I t ( 20 ) 2 v - 1 - 1 同样地 , 将式 ( 18 ) 对 u t 求积分 , 式 ( 11 )t 的分布密度函数变为 : f (t ) = 0f ( u ,) du t t = 1 N 2Q + 2 v - 1 - 2 1 v - 1 exp - 1 t2 1 2 Q - Q Qt t- 1 ( 21 ) 其中 : 2t= 1 Q + v - 1 1 2 Q + 2 v - 1 2 Q - I t ( 22 ) 因此 , 可得到模型的似然函数 : ,u ,v ,)

    25、= - ll (,2 T N v ) - ln ( 2ln2 T Q + 2 v - 1 1 T (Q t - 2 t = 1 T - Q Q )t+ - 1 ln ( ) 2 1 t t = 1 ( 23 ) ) 可通过对式 ( 23 ) 求最大化而得到 。 参数向量 (,u ,v ,(三 ) 引入潜在的截面异质性 如果观察数据中存在非时变的潜在截面异质性 (可能是于遗漏非时变的投入变量或忽视难于量化 或无法获得观测数据的解释变量等而造成的 )与技术效率不相关 ,忽略截面异质性的模型设定将会把部 分异质引入技术无效率项 uit中 , 此得出的 uit的估计不仅包含真正意义上的技术无效率 ,同

    26、时也测算了 模型所忽略的截面异质性 ,这样势必会影响到最后有关技术效率的估算 般 SFM 中 , Greene ( 2005 )的实证结果支持了以上论述 。 下面所建立的空间面板 SFM ,不仅考虑技术无效率项 uit的异方差性 ,还进一步将潜在的截面异 质性引入模型中 ,分别以引入随机截面特有项和设定随机系数的形式来表示截面异质性 ,并采用模拟 ML ( sim u la ted ML )进行估计 ,给出模拟对数似然函数 ( sim u la ted log like lihood func tion) 1. 引入随机截面特有项 yt= + + xW 1 yt+ vt- u t t +u t

    27、 与 t 的条件联合分布密度为 : 2 it 12 - 15 12 , 13 。在不考虑空间相关性的一 。 ( 24 ) 其中 : = 1 ,2 , ?,n , 将 看作已知的向量 , 以 为条件 , 则 f ( u t ,t | ) = 1 N v N 1 ) g ( zi ; N i = 1 - 1 / 2 exp - N i = 1 u ) 2 g ( zi ;- ) ( t + u t - 1 (t + u t ) v 2 2 = 1 N 1 ) g ( zi ;i = 1 v - 1 / 2 exp- 1 ( u ( u - t - ) t t ) 2 t exp - 1(- 1 Q ) Q t - Q2 t (25) t 的表达式参见式 ( 19 ) 及式 ( 20 ) 。 其中 :、以 为条件 ,t 的条件分布密度函数为 : f (t | ) = 0 f ( u , | ) du = t t t 1 N 2Q + v 2 v - 1 - 1 2 1 1 - 1 t 2 exp - (Q - Q Q ) t 2 t ( 26 ) 其中 : 2t 的表达式参见式 ( 22 ) 。 于 f (t ) = t 1 f (| ) g (;) d等价于 E1 N f (t | ) , 从 的联合概率分布 g (;


    注意事项

    本文(空间面板随机前沿模型及技术效率估计.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开