欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    遗传算法与优化问题Word文档下载推荐.docx

    • 资源ID:1461947       资源大小:129.52KB        全文页数:24页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    遗传算法与优化问题Word文档下载推荐.docx

    1、6适应值个体对于环境的适应程度,或在环境压力下的生存能力可行解所对应的适应函数值7种群被选定的一组染色体或个体根据入选概率定出的一组可行解8选择从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解9交叉一组染色体上对应基因段的交换根据交叉原则产生的一组新解10交叉概率染色体对应基因段交换的概率(可能性大小)闭区间0,1上的一个值,一般为0.650.9011变异染色体水平上基因变化编码的某些元素被改变12变异概率染色体上基因变化的概率(可能性大小)开区间(0,1)内的一个值, 一般为0.0010.0113进化、适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函

    2、数取到最大值,最优的可行解(2)遗传算法的步骤遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation)遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就

    3、是问题的最优解下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的

    4、是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止2遗传算法的实际应用例1:设,求注:这是一个非常简单的二次函数求极值的问题,相信大家都会做在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题在此将细化地给出遗传算法的整个过程(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把到2这个区间内的数用计算机语言表示出来编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA编码空间中的点(染色体位串)的表现型;健全性:GA编码空间中的染色体位串必须对应问题空间中的某一潜在解;非冗余性:染色体和潜在

    5、解必须一一对应这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个0,1二进制串当然,串长取决于求解的精度如果要设定求解精度到六位小数,由于区间长度为,则必须将闭区间分为等分因为所以编码的二进制串至少需要22位将一个二进制串(b21b20b19b1b0)转化为区间内对应的实数值很简单,只需采取以下两步(Matlab程序参见附录4):1)将一个二进制串(b21b20b19b1b0)代表的二进制数化为10进制数:2)对应的区间内的实数:例如,一个二进制串a=表示实数0.637197=(1000101110110101000111)2=2288967二进制串,则分别表示区间的

    6、两个端点值-1和2利用这种方法我们就完成了遗传算法的第一步编码,这种二进制编码的方法完全符合上述的编码的三个原则首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)=, % a11000011001010001000010, % a20001100111010110000000, % a30110101001101110010101 % a4(Matlab程序参见附录2)化成十进制的数分别为:pop(1)= 1.523032,0.574022 ,-0.697235 ,0.247238 接下来我们就要解决每个染色体个体的适应值问题了(2)定义适应函数和适应值由于给定的目标函数在内的值

    7、有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础对于本题中的最大化问题,定义适应函数,采用下述方法:式中既可以是特定的输入值,也可以是当前所有代或最近K代中的最小值,这里为了便于计算,将采用了一个特定的输入值若取,则当时适应函数;当由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab程序参见附录3):f pop(1)= 1.226437 , 1.318543 , -1.380607 , 0.933350 然后通过适应函数计算出适应值分别如下(Matlab程

    8、序参见附录5、附录6):取,gpop(1)= 2.226437 , 2.318543 , 0 , 1.933350 (3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率其计算公式如下:对于给定的规模为n的群体pop=,个体的适应值为,则其入选概率为由上述给出的群体,我们可以计算出各个个体的入选概率首先可得 然后分别用四个个体的适应值去除以,得:P(a1)=2.226437 / 6.478330 = 0.343675 % a1P(a2)=2.318543 / 6.478330 = 0.357892 % a2P(a3)= 0 / 6.478330 =

    9、 0 % a3P(a4)=1.933350 / 6.478330 = 0.298433 % a4(Matlab程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab程序参见附录8、附录11)要说明的是:附录11的算法与这里不完全相同为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)= % a4(5)

    10、交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9)我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉(可以在任一位进行交叉)110101110 1001100011110, 交叉得:100001100 1010001000010100001100100110001111010000110010100 01000010100001100101001001010101101010011011 100101010110101001101101000010通过交叉得到了四个新个体,得到新的群体jch

    11、pop (1)如下:jchpop(1)=这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10)现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= 1000011011010010010101 然后重复上述的选择、交叉、变异直到满足终止条件为止(7)终止条件遗传算法的终止条件有两类常见条件:(1)采用设定最大(遗传)代数的方法,一般可设定为50代,此时就可能得出最优解此种方法简单易行,但可能不是很精确(Mat

    12、lab程序参见附录1);(2)根据个体的差异来判断,通过计算种群中基因多样性测度,即所有基因位相似程度来进行控制3遗传算法的收敛性前面我们已经就遗传算法中的编码、适应度函数、选择、交叉和变异等主要操作的基本内容及设计进行了详细的介绍作为一种搜索算法,遗传算法通过对这些操作的适当设计和运行,可以实现兼顾全局搜索和局部搜索的所谓均衡搜索,具体实现见下图2所示图2 均衡搜索的具体实现图示应该指出的是,遗传算法虽然可以实现均衡的搜索,并且在许多复杂问题的求解中往往能得到满意的结果,但是该算法的全局优化收敛性的理论分析尚待解决目前普遍认为,标准遗传算法并不保证全局最优收敛但是,在一定的约束条件下,遗传算

    13、法可以实现这一点下面我们不加证明地罗列几个定理或定义,供读者参考(在这些定理的证明中,要用到许多概率论知识,特别是有关马尔可夫链的理论,读者可参阅有关文献)定理1 如果变异概率为,交叉概率为,同时采用比例选择法(按个体适应度占群体适应度的比例进行复制),则标准遗传算法的变换矩阵P是基本的定理2 标准遗传算法(参数如定理1)不能收敛至全局最优解由定理2可以知道,具有变异概率以及按比例选择的标准遗传算法是不能收敛至全局最最优解我们在前面求解例1时所用的方法就是满足定理1的条件的方法这无疑是一个令人沮丧的结论然而,庆幸的是,只要对标准遗传算法作一些改进,就能够保证其收敛性具体如下:我们对标准遗传算法

    14、作一定改进,即不按比例进行选择,而是保留当前所得的最优解(称作超个体)该超个体不参与遗传最佳个体保存方法(elitist model)的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中此种选择操作又称复制(copy)De Jong对此方法作了如下定义:定义 设到时刻t(第t代)时,群体中a*(t)为最佳个体又设A(t1)为新一代群体,若A(t1)中不存在a*(t),则把a*(t)作为A(t1)中的第n+1个个体(其中,n为群体大小)(Matlab程序参见附录11)采用此选择方法的优点是,进化过程中某一代的最优解可不被交叉和变异操作所破坏但是,这也隐含了一种危机,即局部最优个体的

    15、遗传基因会急速增加而使进化有可能限于局部解也就是说,该方法的全局搜索能力差,它更适合单峰性质的搜索空间搜索,而不是多峰性质的空间搜索所以此方法一般都与其他选择方法结合使用定理3 具有定理1所示参数,且在选择后保留当前最优值的遗传算法最终能收敛到全局最优解当然,在选择算子作用后保留当前最优解是一项比较复杂的工作,因为该解在选择算子作用后可能丢失但是定理3至少表明了这种改进的遗传算法能够收敛至全局最优解有意思的是,实际上只要在选择前保留当前最优解,就可以保证收敛,定理4描述了这种情况定理4 具有定理1参数的,且在选择前保留当前最优解的遗传算法可收敛于全局最优解例2:,编码长度为5,采用上述定理4所

    16、述的“在选择前保留当前最优解的遗传算法”进行此略,留作练习二、相关函数(命令)及简介本实验的程序中用到如下一些基本的Matlab函数:ones, zeros, sum, size, length, subs, double 等,以及 for, while 等基本程序结构语句,读者可参考前面专门关于Matlab的介绍,也可参考其他数学实验章节中的“相关函数(命令)及简介”内容,此略三、实验内容上述例1的求解过程为:群体中包含六个染色体,每个染色体用22位01码,变异概率为0.01,变量区间为,取Fmin=,遗传代数为50代,则运用第一种终止条件(指定遗传代数)的Matlab程序为:Count,R

    17、esult,BestMember=Genetic1(22,6,-x*x+2*x+0.5,-1,2,-2,0.01,50)执行结果为:Count = 50Result = 1.0316 1.0316 1.0316 1.0316 1.0316 1.0316 1.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember = 1.0316 1.4990图2 例1的计算结果(注:上图为遗传进化过程中每一代的个体最大适应度;而下图为目前为止的个体最大适应度单调递增)我们通过Matlab软件实现了遗传算法,得到了这题在第一种终止条件下的最优解:取1.0316时,当然

    18、这个解和实际情况还有一点出入(应该是取1时,),但对于一个计算机算法来说已经很不错了我们也可以编制Matlab程序求在第二种终止条件下的最优解此略,留作练习实践表明,此时的遗传算法只要经过10代左右就可完成收敛,得到另一个“最优解”,与前面的最优解相差无几四、自己动手1 用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解提示:一个可能的函数调用形式以及相应的结果为:Count,Result,BestMember=Genetic2(22,6,-1,2,-2,0.01,0.00001) 13 1.0392 1.0392 1.0392 1.0392 1.0392

    19、1.0392 1.4985 1.4985 1.4985 1.4985 1.4985 1.4985 1.0392 1.4985可以看到:两组解都已经很接近实际结果,对于两种方法所产生的最优解差异很小可见这两种终止算法都是可行的,而且可以知道对于例1的问题,遗传算法只要经过10代左右就可以完成收敛,达到一个最优解2 按照例2的具体要求,用遗传算法求上述例2的最优解3 附录9子程序 Crossing.m中的第3行到第7行为注解语句若去掉前面的%号,则程序的算法思想有什么变化?4 附录9子程序 Crossing.m中的第8行至第13行的程序表明,当Dim(1)=3时,将交换数组Population的最

    20、后两行,即交换最后面的两个个体其目的是什么?5 仿照附录10子程序Mutation.m,修改附录9子程序 Crossing.m,使得交叉过程也有一个概率值(一般取0.650.90);同时适当修改主程序Genetic1.m或主程序Genetic2.m,以便代入交叉概率6 设,要设定求解精度到15位小数五、附录附录1:主程序Genetic1.mfunction Count,Result,BestMember=Genetic1(MumberLength,MemberNumber,FunctionFitness,MinX,MaxX,Fmin,MutationProbability,Gen)Popula

    21、tion=PopulationInitialize(MumberLength,MemberNumber);global Count;global CurrentBest;Count=1;PopulationCode=Population;PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength);PopulationFitnessF=FitnessF(PopulationFitness,Fmin);PopulationProbability=Probability(PopulationFitn

    22、essF);Population,CurrentBest,EachGenMaxFitness=Elitist(PopulationCode,PopulationFitness,MumberLength);EachMaxFitness(Count)=EachGenMaxFitness;MaxFitness(Count)=CurrentBest(length(CurrentBest);while CountGen NewPopulation=Select(Population,PopulationProbability,MemberNumber); Population=NewPopulation

    23、; NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength); NewPopulation=Mutation(Population,MutationProbability); PopulationFitness=Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength); PopulationFitnessF=FitnessF(PopulationFitness,Fmin); PopulationProbability=Probability(Po

    24、pulationFitnessF); Count=Count+1; NewPopulation,CurrentBest,EachGenMaxFitness=Elitist(Population,PopulationFitness,MumberLength); EachMaxFitness(Count)=EachGenMaxFitness; MaxFitness(Count)=CurrentBest(length(CurrentBest);endDim=size(Population);Result=ones(2,Dim(1);for i=1:Dim(1) Result(1,i)=Transla

    25、te(Population(i,:),MinX,MaxX,MumberLength);Result(2,:)=PopulationFitness;BestMember(1,1)=Translate(CurrentBest(1:MumberLength),MinX,MaxX,MumberLength);BestMember(2,1)=CurrentBest(MumberLength+1);close allsubplot(211)plot(EachMaxFitness)subplot(212)plot(MaxFitness)【程序说明】主程序Genetic1.m包含了8个输入参数:(1) Mum

    26、berLength: 表示一个染色体位串的二进制长度(例1中取22)(2) MemberNumber: 表示群体中染色体的个数(例1中取6个)(3) FunctionFitness: 表示目标函数,是个字符串,因此用表达式时,用单引号括出(例1中是)(4) MinX: 变量区间的下限(例1中是中的)(5) MaxX: 变量区间的上限(例1中是中的 2)(6) Fmin: 定义适应函数过程中给出的一个目标函数的可能的最小值,由操作者自己给出(例1中取Fmin=(7) MutationProbability: 表示变异的概率,一般都很小(例1中取0.01)(8) Gen: 表示遗传的代数,也就是终止程序时的


    注意事项

    本文(遗传算法与优化问题Word文档下载推荐.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开