欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    过程控制课程设计锅炉蒸汽负荷控制系统包含 仪表设备表.docx

    • 资源ID:14557746       资源大小:369.18KB        全文页数:31页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    过程控制课程设计锅炉蒸汽负荷控制系统包含 仪表设备表.docx

    1、过程控制课程设计锅炉蒸汽负荷控制系统包含 仪表设备表 锅炉蒸汽负荷控制系统 课程设计报告 姓名: * 学号: * 班级: 自动化 指导教师: * 目 录摘要1绪论2第一章 生产工艺介绍 3 1.1 锅炉设备介绍3 1.2蒸汽过热系统的控制4第二章 控制原理简介5 2.1过热蒸汽温度的动态特性5 2.1.1 蒸汽量扰动5 2.1.2 烟气侧扰动6 2.1.3 减温水量扰动6 2.2 控制方案选择9 2.2.1 单回路控制方案9 2.2.2串级控制方案10 2.3 串级控制方案特点11第三章 控制系统设计12 3.1 系统控制参数确定12 3.1.1 主变量的选择12 3.1.2 副变量的选择12

    2、 3.1.3 操作变量的选择12 3.2 调节阀的选择13 3.3 控制器设计14 3.3.1 控制器控制规律的选择14 3.3.2 控制器正、反作用选择14 3.3.3 控制器的电路实现15第四章 控制仪表的选择16 4.1 温度变送器的选择 16 4.2温度传感器的选择16第五章 控制系统图及说明17 5.1 控制系统图17 5.2 说明 17第六章 改进思想18 6.1 前馈-反馈控制系统 18 6.2 安全联锁控制系统18第七章 总结体会19 7.1 设计总结19 7.2 心得体会19参考文献 20附录21 摘 要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计,而对锅炉过热蒸汽的

    3、良好控制是保证系统输出蒸汽温度稳定的前提。所以本设计采用串级控制系统,这样可以极大地消除控制系统工作中的各种干扰因素,使系统能在一个较为良好的状态下工作,同时锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器管壁温度不超过允许的工作温度。 在本设计用到串级控制系统中,主对象为送入负荷设备的出口温度,副对象为减温器和过热器之间的蒸汽温度。通过控制减温水的流量来实现控制过热蒸汽温度的目的。关键词 串级控制系统 蒸汽负荷控制 温度控制 绪论 蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。过高的蒸汽温度会造成过热器,蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低

    4、又会引起热效率降低,影响经济运行。锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,而且可靠性也不高。 本次课设设计的主要考虑部分是锅炉蒸汽温度控制系统的设计。蒸汽过热系统包括一级过热器、减温器、二级过热器。锅炉汽温控制系统主要包括过热汽和再热蒸汽温度的的调节。主要蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行时非常重要的。过热蒸汽温度控制的任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超允许的工作温度。 过热蒸汽温度是锅炉汽水系统中的温度的最高点,过热蒸汽温度过高或是过低,对锅炉运行及蒸汽设备是不利的。蒸汽温度过高

    5、会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过+-10摄氏度 长期偏差不超过+-5摄氏度。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。据估计,温度每降低5摄氏度,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热气温下限不低于其额定值10 摄氏度。通常,高参数电厂都要求保持过热汽温在540摄氏度的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下两个方面: 1 由于过热器是一个多容且延迟较大

    6、的惯性环节,设备结构设计与控制要求存在很多矛盾,所以影响汽温变化的因素很多,例如:蒸汽量、减温水给水量、烟气侧的过剩空气系数和温度等都可能引起汽温变化。 2 随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大 从而进一步加大了汽温控制的难度。 第一章 生产工艺介绍1.1 锅炉设备介绍锅炉是工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。锅炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用

    7、的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,经过过热器形成过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱排空。 锅炉设备主要工艺流程图锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。按照这些控制要求,锅炉设备将有如下主要的控制系统:供给蒸汽量适应负荷变化需要或保持给定负荷。锅炉供给

    8、用汽设备的蒸汽压力保持在一定范围内。过热蒸汽温度保持在一定范围。汽包水位保持在一定范围内。保持锅炉燃料的经济性和安全性。炉膛负压保持在一定范围。1.2 蒸汽过热系统的控制蒸汽过热系统则是锅炉系统安垒正常运行,确保蒸汽品质的重要部分。本设计主要考虑的部分是锅炉过热蒸汽系统的控制。过热蒸汽温度的控制任务是维持过热器出口汽温在允许范围内,并且保护过热器使管壁温度不超过允许的工作温度.过热蒸汽温度是锅炉给水通道中温度最高的地方.过热器正常运行时的温度一般接近于材料所允许的最高温度.因此,过热蒸汽温度的上限一般不应超过额定值5(额定值为450 ).如果汽温偏低,则会降低全厂的热效应和影响汽轮机的安全运行

    9、,因而过热蒸汽温度的下限一般不低于额定值10。过热蒸汽温度控制的主要任务就是: 克服各种干扰因素,将过热器出口蒸汽温度维持在规定允许的范围内,从而保持蒸气品质合格:保护过热器管壁温度不超过允许的工作温度。本次设计以控制减温水流量的变化来阐述对过热蒸汽温度的自动调节。第二章 控制原理简介2.1 过热蒸汽温度的动态特性2.1.1蒸汽量扰动当蒸汽量扰动时,沿过热器管道整个长度各点的温度几乎同时变化,过热器出口温度的阶跃响应曲线图8-1a)所示。其特点是有迟延,有惯性,有自平衡能力,且较小。当锅炉的蒸汽量增加时,对流式过热器和辐射式过热器的出口汽温随蒸汽量变化的方向是相反的。蒸汽量增加时,通过对流式过

    10、热器的烟量增加,烟温也随之升高,这两具因素都使对流过热器汽温升高。但是,由于蒸汽量增加时,炉膛温度升高较少,辐射传热量的增加比蒸汽量增加所需的吸热量增加要少,因此,当蒸汽量增加,辐射式过热器出口汽温是下降的。图8-1b)表示了对流和辐射两种过热器出口汽温随蒸汽量变化的静态特性。通过对流过热器的受热面积大于辐射过热器的受热面积,对流方式比辐射方式吸热量为多,因此,总的汽温将随蒸汽量增加而升高。蒸汽量变化对汽温变化的传递函数可用下式近似表示:式中k蒸汽量扰动时被调对象的放大系数 对象的时间常数 蒸汽量扰动时对象的迟延时间蒸汽量扰动时过热蒸汽温度动态特性,但不用蒸汽量作为过热蒸汽温度的调节量,这里的

    11、蒸汽量代表锅炉负荷,其大小由外部负荷决定。2.1.2烟气侧扰动由于过热器是一个热交换器,过热器出口汽温反映了工质从过热器中带走的热量和从烟气侧吸收的热量之间的平衡关系。当烟气流量或烟气温度发生扰动时,过热蒸汽温度发生变化。在烟气侧扰动下汽温对象的动态特性如图8-2所示。其特点是:有迟延、有惯性、有自平衡能力。由于烟气侧扰动是沿过热器整个长度使烟气传热量发生变化,所以过热蒸汽温度响应较快,其迟延和惯性比其它扰动要小,但一般不用烟气侧作为调节手段来调节过热蒸汽温度。改变烟量或烟温时,会影响燃烧工况,与燃烧控制互相干扰,另外,烟气侧扰动也将影响再热蒸汽温度。现有电厂热控系统仅用烟气侧作为调节再热蒸汽

    12、温度的手段,而利用减温水量来调节过热蒸汽温度。2.1.3减温水量扰动改变过热器入口蒸汽温度可以有效地调节过热器出口蒸汽温度,这是应用较广的一种汽温调节手段,改变入口蒸汽温度可用喷水来进行。直接喷水减温系统如图8-3所示。采用减温器喷水减温时,要求有足够的调节余量,一般在减温器停运、锅炉出力最大时汽温要高于给定值约3040。采用喷水减温调节过热蒸汽温度时,一般把过热器分成两个区域,如图8-3a)所示,导前汽温2测点前至减温器为导前区,过热器出口汽温1测点到导前汽温测点为惰性区,其传递函数分别用G02(s)和G01(s)来表示,整个被调对象的传递函数用G(s)表示:式中导前汽温 过热器出口汽温 减

    13、温喷水量在减温水量扰动时过热蒸汽温度被调对象的阶跃响应曲线如图8-4所示。汽温对象的传递函数可用下式表示:从阶跃响应曲线可以用工程方法求得G02(s)和G(s),在调节系统分析及调节器参数整定计算过程中,还需用到惰性区的传递函数,它不能由阶跃响应曲线直接求得,只能根据已求得的G02(s)和G(s)来求得: 对于高、中压锅炉采用喷水减温,当减温水量扰动时,汽温对象的迟延时间3060s,惯性时间常数T100s,而当烟气侧扰动时汽温对象的迟延时间1020s,惯性时间常数T100s。需要指出的是汽温对象传递函数表达式(8-1)和(8-2)中的放大系数K2和K是负值,K1为正值,分析和设计汽温调节系统时

    14、应充分考虑。2.2控制方案选择2.2.1单回路控制方案在运行过程中。改变减温水流量,实际上是改变过热器出口蒸汽的热焙,亦改变进口蒸汽温度,如下图所示。从动态特性上看,这种调节方法是最不理想的,但由于设备简单,因此,应用得最多。减温器有表面式和喷水式两种。减温器应尽可能地安装在靠近蒸汽出口处,但一定要考虑过热器材科的安全问题,这样能够获得较好的动态特蛀。但作为控制对象的过热器,由于管壁金属的热容量比较大,使之有较大的热惯性。加上管道较长有一定的传递滞后,如果用下图所示的控制系统,控制器接受过热器出口蒸汽温度变化后,控制器才开始动作,去控制减温水流量的变化又要经过一段时向才能影响到蒸汽温度这样,既

    15、不能及早发现扰动,又不能及时反映控制的效果,将使蒸汽温度发生不能允许的动态偏差。影响锅炉生产的安全和经济运行。实际中过热蒸汽控制系统常采用减温水流量作为操纵变量,但由于控制通道的时间常数及纯滞后均较大,组成单回路控制系统往往不能满足生产的要求。因此常采用串级控制系统,减温器出口温度为副参数,以提高对过热蒸汽温度的控制质量。2.2.2串级控制方案过热器出口蒸汽温度串级控制系统如下图所示。采用两级调节器,这两级调节器串在一起,各有其特殊任务,调节阀直接受控制器TC2的控制,而控制器TC2的给定值受到控制器TC1的控制,形成了特有的双闭环系统,由副调节器调节器和减温器出口温度形成的闭环称为副环。由主

    16、调节器和主信号出口蒸汽温度,形成的闭环称为主环,可见副环是串在主环之中。控制器TC1称主调节器,控制器TC2称为副调节器。将过热器出口蒸汽温度调节器的输出信号,不是用来控制调节阀而是用来改变控制器TC1的给定值,起着最后校正作用。 过热蒸汽温度串级调节系统原理图串级系统是一个双回路系统,实质上是把两个调节器串接起来,通过它们的协调工作,使一个被控量准确地保持为给定值。通常串级系统副环的对象惯性小,工作频率高,而主环惯性大,工作频率低。串级控制系统可以看作一个闭合的副回路代替了原来的一部分对象,起了改善对象特征的作用。除了克服落在副环内的扰动外,还提高了系统的工作频率,加快过渡过程。在炉温过热蒸

    17、汽温度控制系统中,为了获得更好的控制精度,所以采用串级控制系统以得到良好的控制特性。2.3串级控制方案特点由如下串级控制系统方框图可知,主控制器的输出即副控制器的给定,而副控制器的输出直接送往控制阀。主控制器的给定值是由工艺规定的,是一个定制,因此,主环是一个定值控制系统;而副控制器的给定值是由主控制器的输出提供的,它随主控制器输出变化而变化,因此,副环是一个随动控制系统。串级控制系统方框图串级控制系统中,两个控制器串联工作,以主控制器为主导,保证主变量稳定为目的,两个控制器协调一致,互相配合。若干扰来自副环,副控制器首先进行“粗调”,主控制器再进一步进行“细调”。因此控制质量优于简单控制系统

    18、。串级控制有以下优点:由于副回路的存在,减小了对象的时间常数,缩短了控制通道,使控制作用更加及时;提高了系统的工作频率,使振荡周期减小,调节时间缩短,系统的快速性增强了;对二次干扰具有很强的克服能力,对客服一次干扰的能力也有一定的提高;对负荷或操作条件的变化有一定的自适应能力。一般来说,一个设计合理的串级控制系统,当干扰从副回路进入时,其最大偏差将会较小到控制系统的,即便是干扰从主回路进入,最大偏差也会缩小到单回路控制系统的。但是,如果串级控制系统设计得不合理,其优越性就不能够充分体现。因此,串级控制系统的设计合理性十分重要。第三章 控制系统设计3.1 系统控制参数确定3.1.1 主变量的选择

    19、 串级控制系统选择主变量时要遵循以下原则:在条件许可的情况下,首先应尽量选择能直接反应控制目的的参数为主变量;其次要选择与控制目的有某种单值对应关系的间接单数作为主变量;所选的主变量必须有足够的变化灵敏度。综合以上原则,在本系统中选择送入负荷设备的出口蒸汽温度作为主变量。该参数可直接反应控制目的。3.1.2副变量的选择副回路的设计质量是保证发挥串级系统优点的关键。副变量的选择应遵循以下原则:应使主要干扰和更多的干扰落入副回路;应使主、副对象的时间常数匹配;应考虑工艺上的合理性、可能性和经济型综合以上原则,选择减温器和过热器之间的蒸汽温度作为副变量。3.1.3操纵变量的选择工业过程的输入变量有两

    20、类:控制变量和扰动变量。控制通道和扰动通道的传递函数:。其中,干扰时客观存在的,它是影响系统平稳操作的因素,而操纵变量是克服干扰的影响,使控制系统重新稳定运行的因素。操纵变量的基本原则为:选择对所选定的被控变量影响较大的输入变量作为操纵变量,尽量大;在以上前提下,选择变化范围较大的输入变量作为控制变量,以便易于控制;在的基础上选择对被控变量作用效应较快的输入变量作为控制变量,使控制系统响应较快尽量小;综合以上原则,选择减温水的输入量作为操纵变量。3.2 调节阀的选择在本系统中,调节阀是系统的执行机构,是按照控制器所给定的信号大小和方向,改变阀的开度,以实现调节流体流量的装置。调节阀的口径的大小

    21、,直接决定着控制介质流过它的能力。为了保证系统有较好的流通能力,需要使控制阀两端的压降在整个管线的总压降中占有较大的比例。调节阀的开、关形式需要考虑到以下几种因素:生产安全角度:当气源供气中断,或调节阀出故障而无输出等情况下,应该确保生产工艺设备的安全,不至发生事故;保证产品质量:当发生控制阀处于无源状态而恢复到初始位置时,产品的质量不应降低;尽可能的降低原料、产品、动力损耗;从介质的特点考虑。综合以上各种因素,控制阀,在此串级气温调节系统中,温度过高时,会烧坏过热器、蒸汽管道和汽轮机的高压部分金属损坏,造成生产停顿,还会引起高温锅炉爆炸等严重的后果,所以调节阀应这择气关形式;但温度过低时就会

    22、降低生产的工作热效率并影响汽轮机的安全经济运行,所以调节啊应选择气开形式。在此情况下,出现了矛盾的情况,在此情况下要分消主要矛盾和次要矛盾,权衡利弊,主要矛盾是温度过高出现的后果严重,所以调节润这用气关形式,即。调节阀的流量特性的选择,在实际生产中常用的调节阀有线性特性、对数特性和快开特性三种,在本系统中调节阀的流量特性选择线性特性。阀门定位器的选用,阀门定位器是调节阀的一种辅助装置,与调节阀配套使用,它接受控制器来的信号作为输入信号,并以其输出信号去控制调节阀,同时将调节阀的阀杆位移反馈到阀门定位器的输入端而构成一个闭环随动系统,阀门定位器可以消除阀膜头和弹簧的不稳定以及各运动部件的干摩擦,

    23、从而提高调节阀的精度和可靠性,实现准确定位;阀门定位器增大了执行机构的输出功率,减少了系统的传递滞后,加快阀杆的移动速度;阀门定位器还可以改变调节阀的流量特性。3.3 控制器设计由上文论述可知,系统的控制结构选择串级控制。3.3.1 控制器控制规律的选择在串级控制中,主变量直接关系到产品的质量或生产的安全,所以主变量一般要求不得有余差,而对副变量的要求一般都不很严格,允许有一定的波动和余差。从串级控制的结构上看,主环是一个定值系统,主控制器起着定值控制作用,为使其稳定,主控制器通常选用比例积分控制器,对于本系统由于控制通道容量滞后较大,为克服容量滞后,选用比例积分微分控制器作为主控制器。副环是

    24、一个随动系统,它的给定值随主控制器输出的变化而变化,为了加快跟踪,副控制器一般不带积分作用。若副控制器有微分作用,一旦主控制器输出稍有变化,控制阀就将大幅度变化,这对控制系统很不利,故副控制器只选用比例控制器。3.3.2 控制器正、反作用选择对于串级控制系统,主、副控制器正、反作用的选择顺序应该是先副后主。副控制器的正、反作用要根据副环的具体情况决定,而与主环无关。为了使副环回路构成一个稳定的系统,即构成负反馈系统。在本设计中随着调节阀的开度增加,减温水量增加,副对象即减温器后端蒸汽温度会降低,所以;而调节阀为气关阀,所以,温度升高,检测变送器环节输出增加,由可知,所以副控制器的控制作用应为反

    25、作用。主控制器的正、反作用要根据主环所包括的各个环节的情况来确定。为了使主环回路构成一个稳定的系统,即构成负反馈系统。设计中随着调节阀的开度增加,减温水量增加,副对象即减温器后端蒸汽温度会降低,出口过热蒸汽温度降低, 而调节阀为气关阀,所以,温度升高,检测变送器环节输出增加,由可知,所以主控制器的控制作用应为反作用。3.3.3 控制器的电路实现主控制器采用PID调节器,副控制器采用P调节器,可以使用单片机编程实现P、I、D的调节作用,也可以直接使用模拟电路搭建PID调节模块,在实际生产中,大多采用制作成型的PID模块以保证系统的正常运行。第四章 控制仪表的选择4.1 温度变送器的选择 温度变送

    26、器可分为电动和气动,常用的控制仪表有电动II型、III型。在串级系统中,选用的仪表不同,具体的实施方案也不同。 电动II型、III型仪表就其功能而言是基本上相同的,但是就其控制信号而言是存在差异的。具体变现在电动II型的典型控制信号为010mADC动III型的典型控制信号是420mADC。另外与II型仪表相比 操作、维护更为方便简捷,同时仪表还有较完善的跟踪、保持电路,使得手动切换更为方便,随时都可以进行转换,而且保证无干扰。综上所述,在本设计中需选用电动III型仪表。 4.2 温度传感器的选择 温度传感器有热电偶和热电阻两种:在本设计中,最好选用热电偶温度传感器。原因在于热电偶的测温范围广,

    27、耐高温,精度高,结构简单,更换方便,压簧式感温原件,抗震性能好,可以将热转换为电能,用所产生热电势测量温度。 具有采用K型热电偶,原因在于:1K型热电偶可以直接测量各种生产中从0摄氏度到1300摄氏度范围的液体蒸汽和气体介质以及固体的便面温度。 2 K型热电偶具有线性好,热电动势较大,灵敏度高,稳定性和均匀性好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。第五章 控制系统图及说明5.1 控制系统图附图-锅炉蒸汽负荷控制系统图5.2 说明1、对锅炉设备热工参数进行检测,上盘显示:仪表盘上标号各自对应的参数如下; 、二级过热器出口温度 960 、一级过热器出口温度,540 、饱和蒸汽压力

    28、,12MPa、过热蒸汽流量,143t/h、饱和蒸汽压力,12MPa 、锅炉汽包水位, 300mm 、上级省煤器后烟气温度 、炉膛负压,-70Pa 、下级空气预热器后烟气温度,1602、对于温度检测器,需要有温度传感器,在仪表内,用虚线;对于显示表,在控制室,用实线;对于其他现场的检测器,在仪表,不用画线。3、引风机:把烟气从烟道中抽出,送入烟囱排入大气。 鼓风机:把空气吹进烟道中预热,再送入炉膛助燃。第六章 改进设想61 前馈-反馈控制系统 组成双冲量控制系统,即前馈-反馈控制系统,将减温器出口温度的微分信号作为前馈信号,与过热器出口温度相加后作为过热器温度控制器测量,当减温器出口温度有变化时,才引入前馈信号。稳定工况下,该微分信号为零,与单回路控制系统相同。如下图,TY是微分器。过热蒸汽的双冲量控制系统6.2 安全联锁控制系统 为防止过热出口温度过低,照成过热蒸汽携带冷凝水进入蒸汽透平,损坏


    注意事项

    本文(过程控制课程设计锅炉蒸汽负荷控制系统包含 仪表设备表.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开