欢迎来到冰点文库! | 帮助中心 分享价值,成长自我!
冰点文库
全部分类
  • 临时分类>
  • IT计算机>
  • 经管营销>
  • 医药卫生>
  • 自然科学>
  • 农林牧渔>
  • 人文社科>
  • 工程科技>
  • PPT模板>
  • 求职职场>
  • 解决方案>
  • 总结汇报>
  • ImageVerifierCode 换一换
    首页 冰点文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    高中数学备课参考计数原理排列组合及二项式定理第6节例析排列组合.docx

    • 资源ID:14128370       资源大小:67.87KB        全文页数:20页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学备课参考计数原理排列组合及二项式定理第6节例析排列组合.docx

    1、高中数学备课参考计数原理排列组合及二项式定理第6节 例析排列组合例析排列组合问题的解题方略排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律:1使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给

    2、的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 运用两个基本原理 加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分类或分步处理。 例1n个人参加某项资格考试,能否通过,有多少种可能的结果? 解法1:用分类计数的原理:没有人通过,有种结果;1个人通过,有种结果,;n个人通过,有种

    3、结果。所以一共有种可能的结果。 解法2:用分步计数的原理:第一个人有通过与不通过两种可能,第二个人也是这样,第n个人也是这样。所以一共有种可能的结果。 例2同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有( ) (A)6种 (B)9种 (C)11种 (D)23种 解:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d。 第一步,甲取其中一张,有3种等同的方式; 第二步,假设甲取b,则乙的取法可分两类: (1)乙取a,则接下来丙、丁的取法都是唯一的, (2)乙取c或d(2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。 根

    4、据加法原理和乘法原理,一共有种分配方式。2排列与组合定义相近,它们的区别在于是否与顺序有关。3复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。4按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。5处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明

    5、确,分步层次清楚,不重不漏。6在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。一特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。例1 用0,2,3,4,

    6、5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。A 24个 B.30个 C.40个 D.60个分析由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B。解法一:(元素优先)分两类:第一类,含0,0在个位有A42种,0在十位有A21A31种;第二类,不含0,有A21A32种。故共有(A42+A21A31)+A32A21=30。注:在考虑每一类时,又要优先考虑

    7、个位。解法二:(位置优先)分两类:第一类,0在个位有A42种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有A21A31A31种。故共有A42+A21A31A31=30。 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。例2 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法( )种解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有C31种,而其余学生的排法有A44 种,所以共有C31 A44 72种不同的排法.例3乒乓球队的10名队员中有3名主力队员,派5名队

    8、员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有( )种.解:由于第一、三、五位置特殊,只能安排主力队员,有A33 种排法,而其余7名队员选出2名安排在第二、四位置,有A72 种排法,所以不同的出场安排共有A33 A72252种.例4从0,1,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 解:个位选0,有个,个位不选0且万位不能选0,有个,所以一共可以得到个偶数。 注:0,2,4,6,8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。 例58人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有

    9、多少种排法? 解:先排甲,有种排法。再排乙,有种排法,再排其余的人,又有种排法,所以一共有种排法。特殊优先,一般在后 对于问题中的特殊元素、特殊位置要优先安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。练习1由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有个(用数字作答)。答案:36(=C21 C31 A33)二总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53-3A42+ C21A31=30

    10、个偶数。在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。例6. 正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 332个.三合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。四相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排

    11、列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法例7有8本不同的书;其中数学书3本,外语书2本,其它学科书3本若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种(结果用数值表示)解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A33种排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22=1440(种).注:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题例87名学生站成一排,甲、乙必须站在一起有多少不同

    12、排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。例98人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?解:把甲、乙、丙先排好,有种排法,把这三个人“捆绑”在一起看成是一个,与其余5个人相当于6个人排成一排,有种排法,所以一共有=1440种排法。例10 5个男生3个女生排成一列,要求女生排一起,共有几种排法?解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应全排列。由乘法原理共有A66A33种。练

    13、习3 四对兄妹站一排,每对兄妹都相邻的站法有多少种?答案:A4424=384五不相邻问题用“插空法”:不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法例11用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个(用数字作答)解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元

    14、素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有A33种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42288(种)注:运用“插空法”解决不相邻问题时,要注意欲插入的位置是否包含两端位置例12 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为: 种 .评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。例13排一张有8个节目的演出表,其中有3个小

    15、品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?解:先排5个不是小品的节目,有种排法,它们之间以及最后一个节目之后一共有6个空隙,将3个小品插入进去,有种排法,所以一共有=7200种排法。 注:捆绑法与插入法一般适用于有如上述限制条件的排列问题。例14 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?解:先排无限制条件的男生,女生插在5个男生之间的4个空隙,由乘法原理共有A55A43种。注意:必须分清“谁插入谁”的问题。要先排无限制条件的元素,再插入必须间隔的元素;数清可插的位置数;插入时是以组合形式插入还是以排列形式插入要把握准。练习4 4男4女站成一行,男女

    16、相间的站法有多少种?答案:2A44A44例15马路上有编号为1、2、3、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种?解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有C53种。练习5 从1、2、10这十个数中任选三个互不相邻的自然数,有几种不同的取法?答案:C83。六顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。例166个人排队,甲、乙、丙三人按“甲-乙-丙”顺序排的排队方法有多少种?分析:不考

    17、虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 A33 =120种。(或A63种)例174个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 A33种)元素定序,先排后除或选位不排或先定后插对于某些元素的顺序固定的排列问题,可先全排,再除以定序元素的全排,或先在总位置中选出定序元素的位置而不参加排列,然后对其它元素进行排列。也可先放好定序的元素,再一一插入其它元素。例1

    18、85人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况?解法一:先5人全排有A55种,由于全排中有甲、乙的全排种数A22,而这里只有1种是符合要求的,故要除以定序元素的全排A22种,所以有A55/A22=60种。解法二:先在5个位置中选2个位置放定序元素(甲、乙)有C52种,再排列其它3人有A33,由乘法原理得共有C52A33=60种。解法三:先固定甲、乙,再插入另三个中的第一人有3种方法,接着插入第二人有4种方法,最后插入第三人有5种方法。由乘法原理得共有345=60种。练习6 要编制一张演出节目单,6个舞蹈节目已排定顺序,要插入5个歌唱节目,则共有几种插入方法?答案:A1111/

    19、A66或C116A55=C115A55或7891011种七分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。例197个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种。八逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。例20. 将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )A6 B.9 C.11 D.23解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4

    20、,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B九、构造模型 “隔板法”对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。例21方程a+b+c+d=12有多少组正整数解?分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .又如方程a+b+c+d=12非负整数解的个数,可用此法解。例10把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室

    21、分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。 例2220个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法? 解:将20个球排成一排,一共有21个空隙,将两个隔板插入这些空隙中(两个隔板可以插在同一空隙中),规定由隔板分成的左、中、右三部分球分别分给3个人,则每一种隔法对应了一种分法,每一种

    22、分法对应了一种隔法,于是分法的总数为种方法。注:本题可转化成求方程的非负整数解的个数。 相同元素进盒,用档板分隔例2310张参观公园的门票分给5个班,每班至少1张,有几种选法?解:这里只是票数而已,与顺序无关,故可把10张票看成10个相同的小球放入5个不同的盒内,每盒至少1球,可先把10球排成一列,再在其中9个间隔中选4个位置插入4块“档板”分成5格(构成5个盒子)有C94种方法。注:档板分隔模型专门用来解答同种元素的分配问题。练习9 从全校10个班中选12人组成排球队,每班至少一人,有多少种选法?答案:C119十.正难则反排除法对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨

    23、论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法例24从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种 A140种 B80种 C70种 D35种解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70(种),故选C注:这种方法适用于反面的情况明确且易于计算的习题例25求以一个长方体的顶点为顶点的四面体的个数。解:从8个点中取4个点,共有种方法,其中取出的4个点共面的有种,所以符合条件的四面体的个数为个。 例26100件产品中有3件是

    24、次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 解:从100件产品中取5件产品,有种取法,从不含次品的95件中取出5件产品有种取法,所以符合题意的取法有种。 例278个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 解:无限制条件有种排法。A与B或A与C在一起各有种排法,A、B、C三人站在一起且A在中间有种排法,所以一共有+=21600种排法。十一逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律。例28从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。解:两个数相加中以较小的数为被加数

    25、,1+100100,1为被加数时有1种,2为被加数有2种,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,99为被捕加数的只有1种,故不同的取法有(1+2+3+50)+(49+48+1)=2500种十二一一对应法:例29. 在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。十三、多元问题分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。例30(2003年北京春招)某班新年联欢会原定的5个节目已

    26、排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )A42 B30 C20 D12解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。例31如图, 一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色。用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从

    27、而共有24+48=72种方法,应填72. 多类元素组合,分类取出例32 车间有11名工人,其中4名车工,5名钳工,AB二人能兼做车钳工。今需调4名车工和4名钳工完成某一任务,问有多少种不同调法?解:不同的调法按车工分为如下三类:第一类调4车工4钳工;第二类调3车工4钳工,从AB中调1人作车工;第二类调2车工4钳工,把AB二人作为车工。故共有C44C74+C43C21C64+C42C22C54=185种不同调法。注:本题也可按钳工分类。若按A、B分类,会使问题变得复杂 十四、混合问题先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略例3312名同学分别到三个不同的路口进行车流

    28、量的调查,若每个路口4人,则不同的分配方案共有( ) A 种 B 种 C 种 D 种解:本试题属于均分组问题。 则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。例34从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 ( )A24种 B18种 C12种 D6种解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31A22,故不同的种植方法共有A31C32A22=12,故应选C. 排组混合,先选后排对于排列与组合的混合问题,宜先用组合选取元素,再进行排列。例35

    29、4个不同的小球放入编号为1、2、3、4的四个盒内,则恰有一个空盒的放法有几种?解:由题意,必有一个盒内有2个球,同一盒内的球是组合,不同的球放入不同的盒子是排列。因此,有C42A43=144种放法。练习2 由数字1,2,3,4,5,6,7组成有3个奇数字,2个偶数字的五位数,数字不重复的有多少个?答案:有C43C32A55=1440(个)十五. 机会均等法 例3610个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 解:甲、乙、丙三人排列一共有6种排法,在这6种排法中各种排列顺序在10个人的所有排列中出现的机会是均等的,因此符合题设条件的排法种数为。 例37用1,4

    30、,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 解:若不为0,在每一个数位上1,4,5,出现的机会是均等的。由于一共可以得到24个四位数,所以每一个数字在每一个数位上出现6次,于是得到:,解得。 若为0,无解。十六. 转化法 例38一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法? 解:10级台阶,要求8步走完,并且每步只能走一级或2级。显然,必须有2步中每步走2级,6步中每步走一级。记每次走1级台阶为A,记每次走2级台阶为B,则原问题就相当于在8个格子中选2个填写B。其余的填写A,这是一个组合问题,所以一共有种走法。 例39动点从(0,0)沿水平或竖直

    31、方向运动到达(6,8),要使行驶的路程最小,有多少种走法? 解:动点只能向上或向右运动才能使路程最小而且最小的路程为14,把动点运动1个单位看成是1步,则动点走了14步,于是问题就转化为在14个格子中填写6个“上”和8个“右”,这也是一个组合的问题,于是得到一共有种走法。十七、“小团体”排列,先“团体”后整体对于某些排列问题中的某些元素要求组成“小团体”时,可先按制约条件“组团”并视为一个元素再与其它元素排列。例40 四名男歌手与两名女歌手联合举行一场演唱会,演出的出场顺序要求两名女歌手之间有两名男歌手,则出场方案有几种?解:先从四名男歌手中选2人排入两女歌手之间进行“组团”有A42A22种,把这个“女男男女”小团体视为1人再与其余2男进行排列有A33种,由乘法原理,共有A42A22A33种。练习7 6人站成一排,其中一小孩要站在爸妈之间的站法有多少种?答案


    注意事项

    本文(高中数学备课参考计数原理排列组合及二项式定理第6节例析排列组合.docx)为本站会员主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 冰点文库 网站版权所有

    经营许可证编号:鄂ICP备19020893号-2


    收起
    展开